Abstract
In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ganz, R., Parvizi, J., Beck, M., Leunig, M., Notzli, H., Siebenrock, A.: Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin. Orthop. Relat. Res. 417, 112–120 (2003)
Laborie, L.B., Lehmann, T.G., Engester, I., Eastwood, D.M., Engester, L.B., Rosendahl, K.: Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology 260(2), 494–502 (2011)
Zheng, G.: Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph. Medical Physics 37(4), 1424–1439 (2010)
Fleute, M., Lavallée, S.: Nonrigid 3-D/2-D registration of images using statistical models. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 138–147. Springer, Heidelberg (1999)
Lamecker, H., Wenckebach, T.H., Hege, H.-C.: Atlas-based 3D-shape reconstruction from X-ray iamges. In: Proceedings of ICPR 2006, pp. 371–374. IEEE Computer Society (2006)
Sadowsky, O., Chintalapani, G., Taylor, R.H.: Deformable 2D-3D registration of the pelvis with a limited field of view, suing shape statistics. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 519–526. Springer, Heidelberg (2007)
Zheng, G., Gollmer, S., Schumann, S., et al.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Medical Image Analysis 13(6), 883–899 (2009)
Baka, N., Kaptein, B.L., de Bruijne, M., et al.: 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical Image Analysis 15, 840–850 (2011)
Zheng, G.: 3D volumetric intensity reconstruction from 2D X-ray images using partial least squares regression. In: Proceedings of ISBI, pp. 1268–1271 (2013)
Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Articulated spine models for 3-D reconstruction from partial radiographic data. IEEE Transactions on Biomedical Engineering 55(11), 2565–2574 (2008)
Harmouche, R., Cheriet, F., Labelle, H., Dansereau, J.: 3D registration of MR and X-ray spine images using an articulated model. Computerized Medical Imaging and Graphics 36, 410–418 (2012)
Khallaghi, S., Mousavi, P., Gong, R.H., Gill, S., Boisvert, J., Fichtinger, G., Pichora, D., Borschneck, D., Abolmaesumi, P.: Registartion of a statistical shape model of the lumbar spine to 3D ultrasound images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 68–75. Springer, Heidelberg (2010)
Klinder, T., Wolz, R., Lorenz, C., Franz, A., Ostermann, J.: Spine segmentation using articulated shape models. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 227–234. Springer, Heidelberg (2008)
Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato, Y.: Automated CT segmentation of diseased hip using hierarchical and condictional statistical shape models. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 190–197. Springer, Heidelberg (2013)
Kainmueller, D., Lamecker, H., Zachow, S., Hege, H.-C.: An articulated statistical shape model for accurate hip joint segmentation. In: Proceedings of IEEE EMBS 2009, Part II, pp. 6345–6351 (2009)
Heitz, G., Rohlfing, T., Maurer Jr., C.R.: Statistical shape model generation using nonrigid deformation of a template mesh. In: Medical Imaging 2005: Image Processing, vol. 5747, pp. 1411–1421 (2005)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(suppl. 1), S61–S72 (2009)
Schumann, S., Liu, L., Tannast, M., Bergmann, M., Nolte, L.-P., Zheng, G.: An integrated system for 3D hip joint reconstruction from 2D X-rays: an preliminary validation study. Annals of Biomedical Engineering 41(10), 2077–2087 (2013)
Banerjee, P., Mclean, C.R.: Femoroacetabular impingement: a review of diagnosis and management. Curr. Rev. Musculoskelet Med. 4(1), 23–32 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Balestra, S., Schumann, S., Heverhagen, J., Nolte, L., Zheng, G. (2014). Articulated Statistical Shape Model-Based 2D-3D Reconstruction of a Hip Joint. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, vol 8498. Springer, Cham. https://doi.org/10.1007/978-3-319-07521-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-07521-1_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07520-4
Online ISBN: 978-3-319-07521-1
eBook Packages: Computer ScienceComputer Science (R0)