Abstract
We consider how to preprocess n colored points in the plane such that later, given a multiset of colors, we can quickly find an axis-aligned rectangle containing a subset of the points with exactly those colors, if one exists. We first give an index that uses o(n 4) space and o (n) query time when there are \({\mathcal{O}({1})}\) distinct colors. We then restrict our attention to the case in which there are only two distinct colors. We give an index that uses \({\mathcal{O}({n})}\) bits and \({\mathcal{O}({1})}\) query time to detect whether there exists a matching rectangle. Finally, we give a \({\mathcal{O}({n})}\)-space index that returns a matching rectangle, if one exists, in \({\mathcal{O}({\lg ^2 n / \lg \lg n})}\) time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for highly run-length compressible texts. IPL 113, 604–608 (2013)
Barba, L., et al.: On k-enclosing objects in a coloured point set. In: Proc. CCCG, 229–234 (2013)
Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: Proc. STACS, pp. 20–31 (2013)
Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range medians. TCS 412, 2588–2601 (2011)
Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. IJFCS 23, 357–374 (2012)
Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. IPL 92, 293–297 (2004)
Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range counting. In: Proc. SODA, pp. 241–251 (2013)
Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Proc. PSC, pp. 105–117 (2009)
Cicalese, F., Laber, E., Weimann, O., Yuster, R.: Near linear time construction of an approximate index for all maximum consecutive sub-sums of a sequence. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer, Heidelberg (2012)
Cicalese, F., Gagie, T., Giaquinta, E., Laber, E.S., Lipták, Z., Rizzi, R., Tomescu, A.I.: Indexes for jumbled pattern matching in strings, trees and graphs. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 56–63. Springer, Heidelberg (2013)
Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. JCSS 77, 799–811 (2011)
Fici, G., Lipták, Z.: On prefix normal words. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 228–238. Springer, Heidelberg (2011)
Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on trees and tree-like structures. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 517–528. Springer, Heidelberg (2013)
Giaquinta, E., Grabowski, S.: New algorithms for binary jumbled pattern matching. IPL 113, 538–542 (2013)
Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013)
Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to metabolic networks. TCBB 3, 360–368 (2006)
Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures for permutation matching in binary strings. JDA 10, 5–9 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Durocher, S., Fraser, R., Gagie, T., Mondal, D., Skala, M., Thankachan, S.V. (2014). Indexed Geometric Jumbled Pattern Matching. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds) Combinatorial Pattern Matching. CPM 2014. Lecture Notes in Computer Science, vol 8486. Springer, Cham. https://doi.org/10.1007/978-3-319-07566-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-07566-2_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07565-5
Online ISBN: 978-3-319-07566-2
eBook Packages: Computer ScienceComputer Science (R0)