Abstract
Scaled matching and permutation matching are two well known paradigms in the domain of pattern matching. Scaled matching refers to finding an occurrence of a pattern which is enlarged proportionally by some scale k within a larger text. Permutation matching is the problem of finding all substrings within a text where the character statistics of the substring and the pattern are the same. Permutation matching is easy, while scaled matching requires innovative solutions. One interesting setting of applications is the merge of the two. The problem of scaled permuted matching (i.e. first permuting and then scaling) has been addressed and solved optimally. However, it was left as an open problem whether there are efficient algorithms for permuted scaled matching. In this paper we solve the problem efficiently in a deterministic setting and optimally in a randomized setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via parikh mapping. J. Discrete Algorithms 1(5-6) (2003)
Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Inf. Process. Lett. 70(4), 185–190 (1999)
Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimensional scaled matching. Algorithmica 53(3), 314–336 (2009)
Amir, A., Butman, A., Lewenstein, M., Porat, E., Tsur, D.: Efficient one-dimensional real scaled matching. J. Discrete Algorithms 5(2), 205–211 (2007)
Amir, A., Călinescu, G.: Alphabet-independent and scaled dictionary matching. J. Algorithms 36(1), 34–62 (2000)
Amir, A., Chencinski, E.: Faster two dimensional scaled matching. Algorithmica 56(2), 214–234 (2010)
Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with scaling. J. Algorithms 13(1), 2–32 (1992)
Boyer, R.S., Strother Moore, J.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977)
Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012)
Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On approximate jumbled pattern matching in strings. Theory Comput. Syst. 50(1), 35–51 (2012)
Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf. Process. Lett. 92(6), 293–297 (2004)
Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Stringology, pp. 105–117 (2009)
Cicalese, F., Laber, E., Weimann, O., Yuster, R.: Near linear time construction of an approximate index for all maximum consecutive sub-sums of a sequence. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 149–158. Springer, Heidelberg (2012)
Fisher, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M. (ed.) Complexity of Computation. SIAM AMS Proceeding, vol. 7, pp. 113–125 (1974)
Galil, Z., Seiferas, J.I.: Time-space-optimal string matching. J. Comput. Syst. Sci. 26(3), 280–294 (1983)
Sathishkumar, G.A., Ramachandran, S., Bhoopathy Bagan, K.: Image encryption using random pixel permutation by chaotic mapping. In: IEEE Symposium on Computers and Informatics (ISCI), pp. 247–251 (2012)
Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching algorithms. Softw., Pract. Exper. 26(12), 1439–1458 (1996)
Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees and arrays. In: STOC, pp. 125–136 (1972)
Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM Journal of Research and Development 31(2), 249–260 (1987)
Knuth, D.E., Morris, J.H., Pratt, V.B.: Fast Pattern Matching in Strings. SIAM Journal on Computing 6(2), 323–350 (1977)
Moosa, T.M., Sohel Rahman, M.: Sub-quadratic time and linear space data structures for permutation matching in binary strings. J. Discrete Algorithms 10, 5–9 (2012)
Patidar, V., Purohit, G., Sud, K.K., Pareek, N.K.: Image encryption through a novel permutation-substitution scheme based on chaotic standard map. In: International Workshop on Chaos-Fractals Theories and Applications (IWCFTA), pp. 164–169 (2010)
Vishkin, U.: Deterministic sampling - a new technique for fast pattern matching. SIAM J. Comput. 20(1), 22–40 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Butman, A., Lewenstein, N., Munro, J.I. (2014). Permuted Scaled Matching. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds) Combinatorial Pattern Matching. CPM 2014. Lecture Notes in Computer Science, vol 8486. Springer, Cham. https://doi.org/10.1007/978-3-319-07566-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-07566-2_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07565-5
Online ISBN: 978-3-319-07566-2
eBook Packages: Computer ScienceComputer Science (R0)