Skip to main content

EAR-TUKE: The Acoustic Event Detection System

  • Conference paper
Multimedia Communications, Services and Security (MCSS 2014)

Abstract

This paper introduces acoustic events detection system capable of processing continuous input audio stream in order to detect potentially dangerous acoustic events. The system is representing a light, easy extendable, log-term running and complete solution to acoustic event detection. The system is based on its own approach to detection and classification of acoustic events using modified Viterbi decoding process using in combination with Weighted Finite-State Transducers (WFSTs) to support extensibility and acoustic modeling based on Hidden Markov Models (HMMs). Thesystem is completely programmed in C++ language and was designed to be self sufficient and to not require any additional dependencies. Additionally also a signal preprocessing part for feature extraction of Mel-Frequency Cepstral Coefficient(MFCC), Frequency Bank Coefficient (FBANK) and Mel-Spectral Coefficient (MELSPEC) is included. For robustness increase the system contains Cepstral Mean Normalization (CMN) and our proposed removal of basic coefficients from feature vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lopatka, K., Kotus, J., Czyzewski, A.: Application of vector sensors to acoustic surveillance of a public interior space. Archives of Acoustics 36, 851–860 (2011)

    Article  Google Scholar 

  2. Lopatka, K., Czyzewski, A.: Acceleration of decision making in sound event recognition employing supercomputing cluster. Information Sciences (2013) (article in press)

    Google Scholar 

  3. Lojka, M., Juhár, J.: Fast construction of speech recognition network for Slovak language. Journal of Electrical and Electronics Engineering 3(1), 111–114 (2010)

    Google Scholar 

  4. Lee, A., Kawahara, T.: Recent Development of Open-Source Speech Recognition Engine Julius. In: Proc. of the Asia-Pacific Signal and Information Processing Association, Annual Summit and Conference, APSIPA ASC 2009, Sapporo, Japan, pp. 131–137 (2009)

    Google Scholar 

  5. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., Warmuth, M., Wolf, P.: The CMU SPHINX-4 speech recognition system. In: IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong, pp. 2–5 (2003)

    Google Scholar 

  6. Schliep, A., Georgi, B., Rungsarityotin, W., Costa, I., Schonhuth, A.: The general Hidden Markov Model library: Analyzing systems with unobservable states. In: Proceedings of the Heinz-Billing-Price, pp. 121–135 (2004)

    Google Scholar 

  7. Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent Developments in openSMILE, the Munich Open-Source Multimedia Feature Extractor. In: Proc. ACM Multimedia (MM), Barcelona, Spain, pp. 835–838. ACM (2013)

    Google Scholar 

  8. Pleva, M., Lojka, M., Juhar, J.: Modified Viterbi decoder for long-term audio events monitoring. Journal of Electrical and Electronics Engineering 5(1), 195–198 (2012)

    Google Scholar 

  9. Pleva, M., Lojka, M., Juhar, J., Vozarikova, E.: Evaluating the modified Viterbi decoder for long-term audio events monitoring task. In: Proceedings Elmar - International Symposium Electronics in Marine, pp. 179–182 (2012)

    Google Scholar 

  10. Lojka, M., Pleva, M., Juhar, J., Kiktova, E.: Modification of widely used feature vectors for real-time acoustic events detection. In: Proceedings Elmar - International Symposium Electronics in Marine, pp. 199–202 (2013)

    Google Scholar 

  11. Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P., The HTK Book Version 3.4. Cambridge University Press (2006)

    Google Scholar 

  12. Alam, M.J., Ouellet, P., Kenny, P., O’Shaughnessy, D.: Comparative evaluation of feature normalization techniques for speaker verification. In: Travieso-González, C.M., Alonso-Hernández, J.B. (eds.) NOLISP 2011. LNCS, vol. 7015, pp. 246–253. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Vozáriková, E., Juhár, J., Čižmár, A.: Acoustic events detection using MFCC and MPEG-7 descriptors. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 191–197. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Mohri, M., Pereira, F.C.N., Riley, M.: Speech recognition with weighted finite-state transducers. In: Springer Handbook of Speech Processing, pp. 1–31 (2008)

    Google Scholar 

  15. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 257–286 (1989)

    Google Scholar 

  16. Dixon, P.R., Hori, C., Kashioka, H.: A comparison of dynamic WFST decoding approaches. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4209–4212 (2012)

    Google Scholar 

  17. Pleva, M., Vozarikova, E., Dobos, L., Cizmar, A.: The joint database of audio events and backgrounds for monitoring of urban areas. Journal of Electrical and Electronics Engineering 4(1), 185–188 (2011)

    Google Scholar 

  18. Kiktova, E., Lojka, M., Pleva, M., Juhar, J., Cizmar, A.: Comparison of different feature types for acoustic event detection system. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2013. CCIS, vol. 368, pp. 288–297. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Sattar, F., Driessen, P.F., Page, W.H.: Automatic event detection for noisy hydrophone data using relevance features. In: Proceedings of the IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing, pp. 383–388 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lojka, M., Pleva, M., Kiktová, E., Juhár, J., Čižmár, A. (2014). EAR-TUKE: The Acoustic Event Detection System. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2014. Communications in Computer and Information Science, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-319-07569-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07569-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07568-6

  • Online ISBN: 978-3-319-07569-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics