Skip to main content

Evaluation of Sound Event Detection, Classification and Localization in the Presence of Background Noise for Acoustic Surveillance of Hazardous Situations

  • Conference paper
Multimedia Communications, Services and Security (MCSS 2014)

Abstract

Evaluation of sound event detection, classification and localization of hazardous acoustic events in the presence of background noise of different types and changing intensities is presented. The methods for separating foreground events from the acoustic background are introduced. The classifier, based on a Support Vector Machine algorithm, is described. The set of features and samples used for the training of the classifier are introduced. The sound source localization algorithm based on the analysis of multichannel signals from the Acoustic Vector Sensor is presented. The methods are evaluated in an experiment conducted in the anechoic chamber, in which the representative events are played together with noise of differing intensity. The results of detection, classification and localization accuracy with respect to the Signal to Noise Ratio are discussed. The algorithms presented are part of an audio-visual surveillance system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ntalampiras, S., Potamtis, I., Fakotakis, N.: An adaptive framework for acoustic monitoring of potential hazards. EURASIP J. Audio Speech Music Process. 2009, 594103, 1–15 (2009)

    Article  Google Scholar 

  2. Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., Sarti, A.: Scream and gunshot detection and localization for audio-surveillance systems. In: Proc. IEEE Conf. on Advanced Video and Signal Based Surveillance, London, pp. 21–26 (2007)

    Google Scholar 

  3. Zhuang, X., Zhou, X., Hasegawa-Johnson, M., Huang, T.: Real-world acoustic event detection. Pattern Recognition Letters 31, 1543–1551 (2010)

    Article  Google Scholar 

  4. Lu, L., Zhang, H., Jiang, H.: Content analysis for audio classification and segmentation. IEEE Trans. Speech Audio Process. 10(7), 504–516 (2002)

    Article  Google Scholar 

  5. Rabaoui, A., Kadri, H., Lachiri, Z., Ellouze, N.: Using robust features with multi-class SVMs to classify noisy sounds. In: 3rd Int. Symp. on Communications, Control and Sig. Process., Malta, pp. 594–599 (2008)

    Google Scholar 

  6. Dat, T., Li, H.: Sound event recognition with probabilistic distance SVMs. IEEE Trans. Audio Speech Language Process. 19(6), 1556–1568 (2010)

    Google Scholar 

  7. Temko, A., Nadeu, C.: Acoustic event detection in meeting room environments. Pattern Recogn. Lett. 30, 1281–1288 (2009)

    Article  Google Scholar 

  8. Cowling, M., Sitte, R.: Comparison of techniques for environmental sound recognition. Pattern Recogn. Lett. 24, 2895–2907 (2003)

    Article  Google Scholar 

  9. Raytheon BBN Technologies, “Boomerang”, http://www.bbn.com/boomerang

  10. SST Inc., “ShotSpotter”, http://www.shotspotter.com

  11. Safety Dynamics Systems, “SENTRI”, http://www.safetydynamics.net

  12. Kotus, J., Łopatka, K., Kopaczewski, K., Czyżewski, A.: Automatic audio-visual threat detection. In: IEEE Int. Conf. on Multimedia Communications, Services and Security (MCSS 2010), Krakow, pp. 140–144 (2010)

    Google Scholar 

  13. Kotus, J., Łopatka, K., Cżyzewski, A.: Detection and localization of selected acoustic events in 3D acoustic field for smart surveillance applications. In: Dziech, A., Czyżewski, A. (eds.) MCSS 2011. CCIS, vol. 149, pp. 55–63. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Hawkes, M., Nehorai, A.: Wideband source localization using a distributed acoustic vector-sensor array. IEEE Trans. Sig. Process. 51, 1479–1491 (2003)

    Article  MathSciNet  Google Scholar 

  15. Yoo, I., Yook, D.: Robust voice activity detection using the spectral peaks of vowel sounds. J. of the Electronics and Telecommunication Research Institute 31, 451–453 (2009)

    Google Scholar 

  16. Hearst, M.A.: Support vector machines. IEEE Intelligent Systems & Their Applications 13(4), 18–28 (1998)

    Article  Google Scholar 

  17. Rabaoui, A., Davy, M., Rossignol, S., Ellouze, N.: Using one-class SVMs and wavelets for audio surveillance. IEEE Trans. on Information Forensics and Security 3(4), 763–775 (2008)

    Article  Google Scholar 

  18. Łopatka, K., Żwan, P., Czyżewski, A.: Dangerous sound event recognition using support vector machine classifiers. Advances in Intelligent and Soft Computing 80, 49–57 (2010)

    Article  Google Scholar 

  19. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. on Intelligent Systems and Technology (TIST) 2(3), article 27 (2011)

    Google Scholar 

  20. Kim, H.-G., Moreau, N., Sikora, T.: Audio classification based on MPEG-7 spectral basis representations. IEEE Trans. on Circuits and Systems for Video Technology 14(5), 716–725 (2004)

    Article  Google Scholar 

  21. Peeters, G.: A large set of audio features for sound description (similarity and classification) in the CUIDADO project (2004), http://www.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf

  22. Żwan, P., Czyżewski, A.: Verification of the parameterization methods in the context of automatic recognition of sounds related to danger. J. of Digital Forensic Practice 3(1), 33–45 (2010)

    Article  Google Scholar 

  23. Machine Learning Group at University of Waikato, “Waikato Environment for Knowledge Analysis” (2012), http://www.cs.waikato.ac.nz/ml/weka

  24. Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support vector machines. Adv. in Kernel Methods, Support Vector Learning 208(14), 1–21 (1998)

    Google Scholar 

  25. Jacobsen, F., de Bree, H.E.: A comparison of two different sound intensity measurement principles. Journal of the Acoustical Society of America 118(3), 1510–1517 (2005)

    Article  Google Scholar 

  26. Tijs, E., de Bree, H.-E., Steltenpool, S.: Scan & Paint: a novel sound visualization technique. In: Inter-Noise 2010, Lisbon (2010)

    Google Scholar 

  27. Basten, T., de Bree, H.-E., Tijs, E.: Localization and tracking of aircraft with ground based 3D sound probes. In: 33rd European Rotorcraft Forum, Kazan (2007)

    Google Scholar 

  28. Kotus, J.: Application of passive acoustic radar to automatic localization, tracking and classification of sound sources. Information Technologies 18, 111–116 (2010)

    Google Scholar 

  29. Ntalampiras, S., Potamtis, I., Fakotakis, N.: Probabilistic novelty detection for acoustic surveillance under real-world conditions. IEEE Trans. on Multimedia 13(4), 713–719 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Łopatka, K., Kotus, J., Czyżewski, A. (2014). Evaluation of Sound Event Detection, Classification and Localization in the Presence of Background Noise for Acoustic Surveillance of Hazardous Situations. In: Dziech, A., Czyżewski, A. (eds) Multimedia Communications, Services and Security. MCSS 2014. Communications in Computer and Information Science, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-319-07569-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07569-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07568-6

  • Online ISBN: 978-3-319-07569-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics