

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-07593-
8_55

http://link.springer.com/chapter/10.1007/978-3-319-07593-8_55

http://hdl.handle.net/10251/72771

Springer
Advances in Intelligent Systems and Computing Volume 290; Springer

Munera Sánchez, E.; Muñoz Alcobendas, M.; Posadas-Yagüe, J.; Poza-Lujan, J.; Blanes
Noguera, F. (2014). Integration of Mobile Robot Navigation on a Control Kernel Middleware
based system. En Distributed Computing and Artificial Intelligence, 11th International
Conference. Springer
Advances in Intelligent Systems and Computing Volume 290. 477-484. doi:10.1007/978-3-
319-07593-8_55.

Integration of Mobile Robot Navigation on a
Control Kernel Middleware based system

Eduardo Munera Sánchez, Manuel Muñoz Alcobendas, Juan L. Posadas Yagüe,
Jose-Luis Poza-Luján, J. Francisco Blanes Noguera

Institute of Control Systems and Industrial Computing
Polytechnic City of Innovation

Polytechnic University of Valencia, Spain,
emunera@ai2.upv.es, mmunoz@ai2.upv.es, jposadas@disca.upv.es,

jopolu@disca.upv.es, pblanes@ai2.upv.es

www.ai2.upv.es

Abstract. This paper introduces how a mobile robot can perform nav-
igation tasks by taking the advantages of implementing a control kernel
middleware (CKM) based system. Smart resources are also included into
the topology of the system for improving the distribution of computa-
tional load of the needed tasks. The CKM and the smart resources are
both highly reconfigurable, even on execution time, and they also im-
plement fault detection mechanisms and QoS policies. By combining of
these capabilities, the system can be dinamically adapted to the require-
ments of its tasks. Furthermore, this solution is suitable for most type of
robots, including those which are provided of a low computational power
because of the distribution of load, the benefits of exploiting the smart
resources capabilities, and the dynamic performance of the system.

Keywords: Distributed Control Systems, Control Kernel, Robot Navi-
gation, Limited Resources Management, Embedded Systems

1 Introduction

A navigation system is a must in every kind of robot which has to perform its
tasks in an autonomous way and deal with an uncertain dynamic environments
[14]. Although navigation is a well known topic in researches with mobile robots,
it is always associated to a high computational load in comparison with other
tasks that the robot usually performs. Thus many researches have been focused
on how to deal with this load or the way to reduce it, but in every case, compu-
tational capabilities of the robot have to be always well dimensioned for being
able to perform it properly.

Besides, navigation system also implies a strong requirement of data acqui-
sition, even more in those cases which involve visual information [4]. Therefore,
the type of sensor, the reliability of the provided data, and its supplying rate
will affect on the performance of the navigation system. So, should be consid-
ered the proper acquisition and management of the perceptual data required for
nourishing the navigation system.

Finally, a middleware-based implementation improve the performance and
the reliability of the system. It also offers the possibility of working with high
level abstraction and produces portable and reusable code. Therefore, this kind
of implementations offers a great support for developing on mobile robots [6].

1.1 Related works

There are many middleware solutions focused on how to deal with sensor man-
agement(data acquisition) and navigation system. One of the more used frame-
work in robotics is Robot Operating System (ROS) [13], which offers high level
capabilities and works properly for collaborative robot networks, and conse-
quently improves in many aspects the robot communication and data manage-
ment. But shows a lack of generality on low level robot configuration and does
not provide a real-time core with a highly fault tolerance.

Another example is Open RObot COntrol Software (OROCOS) [3] where
mainly features are compiled in two libraries, one for kinematics and dynamics,
and other for bayesian filtering methods, and a toolchain for code generation.
It is usually extended by frameworks like Robot Constrution Toolkit (Rock)
[1]. OROCOS is distinguished for offering hard real-time framework for control
systems by providing tools for data exchange and event-driven services. However
it has a lack of capabilities on behavior management for mobile robot operations.

It also can be introduced Yet Another Robotic Platfform (YARP) [5] as a
middleware which offers a set of libraries and tools for establishing a decoupled
configuration of the robotic platform isolating its devices, in a similar way that is
managed in the architecture here described. But YARP excludes system control
management which depends on a underlying operating system.

Some robotic-specific frameworks that offers more specific capabilities can
be found like the case of CArnegie MEllon Navigation (CARMEN) [7], which
is focused on navigation. It include a full support for navigation tasks like sen-
sor control, obstacle avoidance, localization or path planning. Despite of this
CARMEN disregard low level control, behaviour or real-time management. In
contrast, there can be found behaviour-specific framework for robotic platforms
just as Integrated Behaviour-Based Control (IB2C) [12] that is used for gener-
ation fusion and management of robot behaviours, and supplies graphical tools
for behaviour design and its validation.

As a conclusion, there is no framework with support for the navigation pro-
cess from the lowest level real-time system to the highest behaviour management.
A full support is need in order to adapt of the requirements of the navigation
process, and behaviour tasks.This adaptability is bounded by the capacity of
reconfiguration offered by the devices involved in the system.

1.2 Outline

This paper is structured as follows: Section 2 shows a brief description of the
structure of the used control kernel middleware (CKM) and the integration of
smart resources into the CKM topology. The main contribution is introduced

along section 3, introducing the advantages of using the CKM and the smart
resources as the support of the navigation method. The paper ends with some
conclusions about the work in section 4, and the future lines are collected in
section.

2 Framework

In this section is depicted the current implementation of the CKM evloved form
the proposal described in [2]. This middleware is responsible of core tasks, and
offers mechanisms to suppor the navigation process.

2.1 Control Kernel Middleware

Fig. 1. Topology of a CKM based system .

This topology, as is is shown on Fig. 1, is characterized as a distributed
control system just as is defined in [8], with slightly changes. The main elements
depicted in this system are:

– Full Middleware (FMW): This is a full version of the CKM that implements
all the services that are available in its definition.

– Tiny Middleware (TMW): This is reduced version of the CKM which im-
plements control and communication services disregarding all the high level
interfaces and configuration capabilities. A detailed description of its differ-
ences can be found on [8].

– Physical sensors and actuator: They are physical elements that are connected
to a system that implements CKM, usually the TMW leaving the FMW only
for configuration tasks.

– TCP & RS-485 connections: These protocols are implemented in order to
provide communication capabilities. The RS-485 protocol is used for control
data while the TCP is employed for configuration data and interconnection
between different RS-485 networks. Both ways of communication must offer
certain Quality of service (QoS) capabilities.

– RS-485 resources: These devices can be communicated by using RS-485 with-
out the need of implementing a CKM version. More devices are usually sen-
sors or actuators.

– Smart resources: Are introduced in next section.

2.2 Smart Resources

Smart resources are devices with specific computational capabilities that offer a
TCP interface in order to access to provide services. This services are usually
related to sensorization or actuation tasks that works with big amount of data
and requires advance processing.

In the case of navigation tasks, smart sensors will be only considered. Navi-
gation implies the acquisition and management of several data, usually provided
by different kind of sensors. The processing of all this information is a highly
resource consuming task in both, memory and computational power. An smart
sensor can reduce this situation by a simple TCP interface which offers prepro-
cessed information about the environment leaving only to the CKM the data
fusion step.This sensors will take profit of the QoS advantages.

3 Robot navigation

Once the framework and the concept of smart resource have been introduced,
the main contribution of this work is detailed: the Integration of Mobile Robot
Navigation by using the CKM capabilities. Next a use case in order to validate
this proposal is described .

3.1 Middleware support

The presented CKM is highly suitable for robotic platforms, such as has been
detailed on [9], where it is introduced how the CKM can be used for establishing
a mission-based control for several robotics platforms. Mission oriented tasks
are in most cases extremely related with navigation, which has been defined as
a ”non-goal oriented tasks”. In this case the system allow the navigation tasks
influence the robot behaviours during the fusion process. The use of a proper
configuration of the middleware in addition with one or several smart sensors can
distribute the computational load, and consequently the accuracy of the system
obtaining a better performance. Furthermore the use of QoS mechanisms allows
to improve the reliability of the system, offering the capability of adapt the
behaviour of the robot (or the smart sensor function) to the requirements of the
system at anytime.

This implementation is oriented for offering a future support to a localization
method derived from the one presented in [10]. This method is characterized as a
reliability-based particle filter, where a reliability factor offers a statistical com-
putation of how accurate is the position estimation according to the environment
information. The value of the reliability factor must affect the configuration of
smart sensors forcing a switch between their function modes for adapting the
dynamic required for a proper execution of the navigation algorithm. In eq. 1 and
2 is reflected how the reliability factor (R) affects the coefficient value (fmode)
between 0 and 1. Both, the reliability factor and the coefficient (fmode), are in-
fluenced by its corresponding weights: (wR) and (wmode). Bounding the function
modes between threshold values allow to select the most appropriate on each
case according to the fmode coefficient.

fmode(t) =
R.wR + fmode(t− 1).wmode

wR + wmode
(1)



0 ≤ fmode(t) < thres1 →MODE = 0
...
thresx < fmode(t) < thresx+1 →MODE = X
...
thresn < fmode(t) ≤ 1 →MODE = N

(2)

3.2 Use Case

It has been chosen the KertrolBot as the main robotic platform of this study.
KertrolBot is a two wheeled mobile robot endowed with an array of IR sensors,
its detailed characteristics may be reviewed in [15].

This platform is improved by the addition of a depth camera (which is one of
the most essential sensor for robot navigation) as a Smart Sensor. Several com-
mercial options are available, in this case an Asus Xtion camera is employed. This
camera in combination of a Raspberry Pi provides a TCP interface, that permit
to apply for concrete information about the environment, just like information
about the closest object or distance to a certain colour object. Consequently is
avoided to process raw camera data in the main CKM device, running on the
core of the KertrolBot.

The proposed configuration is illustrated in Fig 2 where the following ele-
ments can be distinguished:

– KertrolBot on Board:
• Core: Main unit, that implements a CKM version which attends to be-

haviours control.
• Infrared Sensors (IR): Reduced CKM implementation which acquires

raw data form IR sensors and offer the core unit a processed value of it.
• Motors: Reduced CKM which interprets control signals from the core

unit and executes a low level control on each wheel motor.

Fig. 2. Diagram of the use case.

• Smart Sensor: Offers high-level services about sensorial information con-
cerning the depth camera.

– FMW: Full middleware implementation running on an external PC that
manages the configuration of the system.

The smart sensor here presented is the main provider of environment data
used for the navigation process. Therefore it has been configured to perform
up to four different modes depending on the navigation reliability factor. In
Fig 3 can be check how the reliability factor influences the mode selection. The
available modes are:

– Mode 1: This mode is used on lost robot situations. The camera is configured
for working with maximum, resolution (VGA - 640x480), for allowing to
spot more landmarks in the environment, and 10 frames per second (FPS),
providing more time between frames for processing.

– Mode 2: In this case the camera uses the same resolution but improves the
frame rate to 20 FPS.

– Mode 3: The most common mode in the robot. It deals with a smaller res-
olution (QVGA - 320x240) at 20 FPS, improving the processing time. The
reliability on the robot position is good enough for helping to spot previously
detected landmarks in a lower resolution.

– Mode 4: In this last mode resolution remains at QVGA, but uses a 33 FPS
frame rate. This mode only takes place when navigation is fully reliable. As
consequence, this system bring more reactivity to the system thanks to the
data acquisition rate.

Fig. 3. Mode selection on Xtion smart sensor.

4 Conclusions

As a result of the work previously exposed, it can be concluded that developed
proposal can exploit the real time control capabilities offered by the CKM and
improve its sensorial capabilities by the use of smart sensors, which in turn is
reflected on the navigation capabilities of the robot. The distribution of the
computational load increases the capabilities of the system and the application
of QoS mechanisms allows to detect and manage erroneous situations through a
reliability factor.

5 Future lines of work

As future lines must be implemented a of reliability-based particle filter like the
one presented on [10]. One of the main subject of future studies is to manage how
the reliability factor and mode switching can influence the dynamic of the system
in order to satisfy navigation needs. It also must be studied how QoS can help
to detect system malfunction, and consequently be reflected in the reliability of
the robot position [11].

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and
Competitiveness under the CICYT project Mission Based Control (COBAMI):
DPI2011-28507-C02-02.

References

1. Rock (Robot Constrution Toolkit) http://www.rock-robotics.org/.
2. P Albertos, A Crespo, and J Simó. Control kernel: A key concept in embedded

control systems. In 4th IFAC Symposium on Mechatronic Systems, 2006.
3. Bob Bruyninckx, Herman and Soetens, Peter and Koninckx. The Real-Time Mo-

tion Control Core of the Orocos Project. In IEEE International Conference on
Robotics and Automation, pages 2766—-2771, 2003.

4. Guilherme N DeSouza and Avinash C Kak. Vision for mobile robot navigation:
A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(2):237–267, 2002.

5. P Fitzpatrick, G Metta, and L Natale. Towards long-lived robot genes. Robotics
and Autonomous systems, 2008.

6. Nader Mohamed, Jameela Al-Jaroodi, and Imad Jawhar. Middleware for robotics:
A survey. In Robotics, Automation and Mechatronics, 2008 IEEE Conference on,
pages 736–742. IEEE, 2008.

7. Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives on stan-
dardization in mobile robot programming: The carnegie mellon navigation (car-
men) toolkit. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, volume 3, pages 2436–2441. IEEE,
2003.

8. M. Muñoz, E. Munera, J. Francisco Blanes, José E. Simo, and G. Benet. Event
driven middleware for distributed system control. XXXIV Jornadas de Automatica,
page 8, 2013.

9. Manuel Muñoz, Eduardo Munera, J. Francisco Blanes, and Jose E. Simó. A hi-
erarchical hybrid architecture for mission-oriented robot control. In Manuel A.
Armada, Alberto Sanfeliu, and Manuel Ferre, editors, ROBOT2013: First Iberian
Robotics Conference, volume 252 of Advances in Intelligent Systems and Comput-
ing, pages 363–380. Springer, 2014.

10. Eduardo Munera Sánchez, Manuel Muñoz Alcobendas, Juan Fco Blanes Noguera,
Ginés Benet Gilabert, and José E Simó Ten. A reliability-based particle filter for
humanoid robot self-localization in RoboCup Standard Platform League. Sensors
(Basel, Switzerland), 13(11):14954–83, January 2013.

11. J.Luis Poza Lujan. Relationship between Quality of Control and Quality of Service
in Mobile Robot Navigation. Distributed Computing and Artificial Intelligence,
pages 557–564, 2012.

12. M Proetzsch, T Luksch, and K Berns. Development of complex robotic systems
using the behavior-based control architecture iB2C. Robotics and Autonomous
Systems, 58(1):46–67, 2010.

13. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, 2009.

14. Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. Coastal
navigation-mobile robot navigation with uncertainty in dynamic environments. In
Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference
on, volume 1, pages 35–40. IEEE, 1999.

15. Vicente Nicolau, Manuel Muñoz, and Jose Simó. KertrolBot Platform. SiDiReLi:
Distributed System with Limited Resources. Technical report, Institute of Control
Systems and Industrial Computing - Polytechnic University of Valencia, Valencia,
Spain, 2011.

