Abstract
The benefits of hybrid stochastic local search (SLS) methods, in comparison with more classical (non-hybrid) ones are often difficult to quantify, since one has to take into account not only the final results obtained but also the effort spent on finding the best configuration of the hybrid and of the classical SLS method. In this paper, we study this trade-off by means of tools for automatic algorithm design, and, in particular, we study the generation of hybrid SLS algorithms versus selecting one classical SLS method among several. In addition, we tune the parameters of the classical SLS method separately and compare the results with the ones obtained when selection and tuning are done at the same time. We carry out experiments on two variants of the permutation flowshop scheduling problem that consider the minimization of weighted sum of completion times (PFSP-WCT) and the minimization of weighted tardiness (PFSP-WCT). Our results indicate that the hybrid algorithms we instantiate are able to match and improve over the best classical SLS method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)
Cerný, V.: A thermodynamical approach to the traveling salesman problem. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)
Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)
Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15(3), 483–495 (1990)
Dubois-Lacoste, J.: A study of Pareto and Two-Phase Local Search Algorithms for Biobjective Permutation Flowshop Scheduling. Master’s thesis, IRIDIA, Université Libre de Bruxelles, Belgium (2009)
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research 38(8), 1219–1236 (2011)
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–113 (1995)
Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation 16(1), 31–61 (2008)
Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research 1, 117–129 (1976)
Glover, F.: Tabu search – Part I. INFORMS Journal on Computing 1(3), 190–206 (1989)
Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)
Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42 (1996)
Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)
Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Journal of Heuristics 19(6), 881–915 (2013)
Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included. Naval Research Logistics Quarterly 1, 61–68 (1954)
Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M.H., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society, Providence (2002)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Boutilier, C. (ed.) Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 517–524. AAAI Press, Menlo Park (2009)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)
Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Gendreau, M., et al. (eds.) Handbook of Metaheuristics, ch. 9, 2nd edn. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, New York (2010)
Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013)
Martí, R., Reinelt, G., Duarte, A.: A benchmark library and a comparison of heuristic methods for the linear ordering problem. Computational Optimization and Applications 51(3), 1297–1317 (2012)
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: Automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013)
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Tech. Rep. TR/IRIDIA/2013-015, IRIDIA, Université Libre de Bruxelles, Belgium (2013)
Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)
Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)
Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research 222(1), 31–43 (2013)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)
Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Marmion, MÉ., Stützle, T. (2014). Algorithm Comparison by Automatically Configurable Stochastic Local Search Frameworks: A Case Study Using Flow-Shop Scheduling Problems. In: Blesa, M.J., Blum, C., Voß, S. (eds) Hybrid Metaheuristics. HM 2014. Lecture Notes in Computer Science, vol 8457. Springer, Cham. https://doi.org/10.1007/978-3-319-07644-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-07644-7_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07643-0
Online ISBN: 978-3-319-07644-7
eBook Packages: Computer ScienceComputer Science (R0)