Skip to main content

Algorithm Comparison by Automatically Configurable Stochastic Local Search Frameworks: A Case Study Using Flow-Shop Scheduling Problems

  • Conference paper
Hybrid Metaheuristics (HM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8457))

Included in the following conference series:

  • 1213 Accesses

Abstract

The benefits of hybrid stochastic local search (SLS) methods, in comparison with more classical (non-hybrid) ones are often difficult to quantify, since one has to take into account not only the final results obtained but also the effort spent on finding the best configuration of the hybrid and of the classical SLS method. In this paper, we study this trade-off by means of tools for automatic algorithm design, and, in particular, we study the generation of hybrid SLS algorithms versus selecting one classical SLS method among several. In addition, we tune the parameters of the classical SLS method separately and compare the results with the ones obtained when selection and tuning are done at the same time. We carry out experiments on two variants of the permutation flowshop scheduling problem that consider the minimization of weighted sum of completion times (PFSP-WCT) and the minimization of weighted tardiness (PFSP-WCT). Our results indicate that the hybrid algorithms we instantiate are able to match and improve over the best classical SLS method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)

    Article  Google Scholar 

  2. Cerný, V.: A thermodynamical approach to the traveling salesman problem. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  4. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15(3), 483–495 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dubois-Lacoste, J.: A study of Pareto and Two-Phase Local Search Algorithms for Biobjective Permutation Flowshop Scheduling. Master’s thesis, IRIDIA, Université Libre de Bruxelles, Belgium (2009)

    Google Scholar 

  6. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research 38(8), 1219–1236 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–113 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability testing. Evolutionary Computation 16(1), 31–61 (2008)

    Article  Google Scholar 

  9. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research 1, 117–129 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Glover, F.: Tabu search – Part I. INFORMS Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  11. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42 (1996)

    Article  Google Scholar 

  13. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)

    MATH  Google Scholar 

  14. Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Journal of Heuristics 19(6), 881–915 (2013)

    Article  Google Scholar 

  15. Johnson, D.S.: Optimal two- and three-stage production scheduling with setup times included. Naval Research Logistics Quarterly 1, 61–68 (1954)

    Article  Google Scholar 

  16. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms. In: Goldwasser, M.H., et al. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. American Mathematical Society, Providence (2002)

    Google Scholar 

  17. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Boutilier, C. (ed.) Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 517–524. AAAI Press, Menlo Park (2009)

    Google Scholar 

  18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation 16(6), 861–875 (2012)

    Article  Google Scholar 

  20. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Gendreau, M., et al. (eds.) Handbook of Metaheuristics, ch. 9, 2nd edn. International Series in Operations Research & Management Science, vol. 146, pp. 363–397. Springer, New York (2010)

    Chapter  Google Scholar 

  21. Marmion, M.E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. Martí, R., Reinelt, G., Duarte, A.: A benchmark library and a comparison of heuristic methods for the linear ordering problem. Computational Optimization and Applications 51(3), 1297–1317 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: Automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Tech. Rep. TR/IRIDIA/2013-015, IRIDIA, Université Libre de Bruxelles, Belgium (2013)

    Google Scholar 

  25. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)

    Article  Google Scholar 

  27. Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research 222(1), 31–43 (2013)

    Article  MathSciNet  Google Scholar 

  28. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  29. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Marmion, MÉ., Stützle, T. (2014). Algorithm Comparison by Automatically Configurable Stochastic Local Search Frameworks: A Case Study Using Flow-Shop Scheduling Problems. In: Blesa, M.J., Blum, C., Voß, S. (eds) Hybrid Metaheuristics. HM 2014. Lecture Notes in Computer Science, vol 8457. Springer, Cham. https://doi.org/10.1007/978-3-319-07644-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07644-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07643-0

  • Online ISBN: 978-3-319-07644-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics