Abstract
This paper studies two clustering algorithms that are based on the Firefly Algorithm (FA) which is a recent swarm intelligence approach. We perform experiments utilizing the Newton’s Universal Gravitation Inspired Firefly Algorithm (GFA) and Weight-Based Firefly Algorithm (WFA) on the 20_newsgroups dataset. The analysis is undertaken on two parameters. The first is the alpha (α) value in the Firefly algorithms and latter is the threshold value required during clustering process. Results showed that a better performance is demonstrated by Weight-Based Firefly Algorithm compared to Newton’s Universal Gravitation Inspired Firefly Algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining Clustering, 1st edn. Pearson (2014)
Chaira, T.: A Novel Intuitionistic Fuzzy C means clustering Algorithm and its application to Medical Image. Applied Soft Computing 11(2), 1711–1717 (2011)
Ngai, E.W.T., Xiu, L., Chau, D.C.K.: Application of Data Mining Technique in Customer Relationship management: A literature review and Classification. Expert Systems with Applications 36(2), 2592–2602 (2009)
Zhang, D., Zhou, L.: Discovering Golden nuggets: Data Mining in Financial Application. IEEE Transactions on Systems,Man, and Cybernetics, Part C: Application and Reviews 34(4), 513–522 (2004)
Luo, C., Li, Y., Chung, S.M.: Text Document Clustering based on Neighbors. Data and Knowledge Engineering 68(11), 1271–1288 (2009)
Jain, A.K.: Data Clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)
Banati, H., Bajaj, M.: Performance Analysis of Firefly Algorithm for Data Clustering. International Journal Swarm Intelligence 1(1) (2013)
Feng, L., Qiu, M.H., Wang, Y.X., Xiang, Q.L., Yang, Y.F., Liu, K.A.: A Fast Divisive Clustering Algorithm Using an Improved Discrete Particle Swarm Optimizer. Pattern Recognition Letters 31(11), 1216–1225 (2010)
Kashef, R., Kamel, M.S.: Enhanced Bisecting K-means Clustering using Intermediate Cooperation. Pattern Recognition 42(11), 2557–2569 (2009)
Rothlauf, F.: Design of Modern Heuristics Principles and Application. Springer, Heidelberg (2011)
He, Y., Hui, S.C., Sim, Y.: A Novel Ant-based Clustering Approach for Document Clustering. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 537–544. Springer, Heidelberg (2006)
Zaw, M.M., Mon, E.E.: Web Document Clustering using Cuckoo Search Clustering Algorithm based on Levy Flight. International Journal of Innovation and Applied Studies 4(1), 182–188 (2013)
Karaboga, D., Ozturk, C.: A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing 11(1), 625–657 (2011)
Senthilnath, J., Omkar, S.N., Mani, V.: Clustering Using Firefly Algorithm: Performance Study. Swarm and Evolutionary Computation 1(3), 164–171 (2011)
Yang, X.S.: Nature-inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, United Kingdom (2011)
Yang, X.S., He, X.: Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intelligence 1(1), 36–50 (2013)
Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A Comprehensive Review of Firefly Algorithms 13, 34–46 (2013)
Hassanzadeh, T., Faez, K., Seyfi, G.: A Speech Recognition System Based on Structure Equivalent Fuzzy Neural Network Trained by Firefly Algorithm. In: International Conference on Biomedical Engineering (ICoBE), pp. 63–67. IEEE (2012)
Horng, M.H., Jiang, T.W.: Multilevel Image Thresholding Selection based on the Firefly Algorithm. In: 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC), pp. 58–63. IEEE (2010)
Adaniya, M.H.A.C., Abrão, T., Proença Jr., M.L.: Anomaly Detection Using Metaheuristic Firefly Harmonic Clustering. Journal of Networks 8(1), 82–91 (2013)
Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing 12(3), 1180–1186 (2012)
Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., Kusek, M.: A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents. Information Sciences 182(1), 77–92 (2012)
Sayadi, M.K., Hafezalkotob, A., Naini, S.G.J.: Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation. Journal of Manufacturing Systems 32(1), 78–84 (2013)
Mohammed, A.J., Yusof, Y., Husni, H.: Weight-Based Firefly Algorithm for Document Clustering. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng 2013). LNEE, vol. 285, pp. 259–266. Springer, Heidelberg (2014)
Mohammed, A.J., Yusof, Y., Husni, H.: A Newton’s Universal Gravitation Inspired Firefly Algorithm for Document Clustering. In: Jeong, H.Y., Yen, N.Y., Park, J.J(J.H.) (eds.) Advanced in Computer Science and its Applications. LNEE, vol. 279, pp. 1259–1264. Springer, Heidelberg (2014)
20 Newsgroup Data Set (2006), http://people.csail.mit.edu/20Newsgroup/
Murugesan, K., Zhang, J.: Hybrid Bisect K-means Clustering Algorithm. In: IEEE International Conference on Business Computing and Global Informatization (BCGIN), pp. 216–219. IEEE (2011)
Hassanzadeh, T., Meybodi, M.R.: A New Hybrid Approach for Data Clustering Using Firefly Algorithm and K-means. In: Proceedings of the 16th IEEE CSI International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 007 – 011 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mohammed, A.J., Yusof, Y., Husni, H. (2014). Experimental Analysis of Firefly Algorithms for Divisive Clustering of Web Documents. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-07692-8_46
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07691-1
Online ISBN: 978-3-319-07692-8
eBook Packages: EngineeringEngineering (R0)