Skip to main content

Experimental Analysis of Firefly Algorithms for Divisive Clustering of Web Documents

  • Conference paper
Recent Advances on Soft Computing and Data Mining

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 287))

  • 1552 Accesses

Abstract

This paper studies two clustering algorithms that are based on the Firefly Algorithm (FA) which is a recent swarm intelligence approach. We perform experiments utilizing the Newton’s Universal Gravitation Inspired Firefly Algorithm (GFA) and Weight-Based Firefly Algorithm (WFA) on the 20_newsgroups dataset. The analysis is undertaken on two parameters. The first is the alpha (α) value in the Firefly algorithms and latter is the threshold value required during clustering process. Results showed that a better performance is demonstrated by Weight-Based Firefly Algorithm compared to Newton’s Universal Gravitation Inspired Firefly Algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining Clustering, 1st edn. Pearson (2014)

    Google Scholar 

  2. Chaira, T.: A Novel Intuitionistic Fuzzy C means clustering Algorithm and its application to Medical Image. Applied Soft Computing 11(2), 1711–1717 (2011)

    Article  Google Scholar 

  3. Ngai, E.W.T., Xiu, L., Chau, D.C.K.: Application of Data Mining Technique in Customer Relationship management: A literature review and Classification. Expert Systems with Applications 36(2), 2592–2602 (2009)

    Article  Google Scholar 

  4. Zhang, D., Zhou, L.: Discovering Golden nuggets: Data Mining in Financial Application. IEEE Transactions on Systems,Man, and Cybernetics, Part C: Application and Reviews 34(4), 513–522 (2004)

    Article  Google Scholar 

  5. Luo, C., Li, Y., Chung, S.M.: Text Document Clustering based on Neighbors. Data and Knowledge Engineering 68(11), 1271–1288 (2009)

    Article  Google Scholar 

  6. Jain, A.K.: Data Clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)

    Article  Google Scholar 

  7. Banati, H., Bajaj, M.: Performance Analysis of Firefly Algorithm for Data Clustering. International Journal Swarm Intelligence 1(1) (2013)

    Google Scholar 

  8. Feng, L., Qiu, M.H., Wang, Y.X., Xiang, Q.L., Yang, Y.F., Liu, K.A.: A Fast Divisive Clustering Algorithm Using an Improved Discrete Particle Swarm Optimizer. Pattern Recognition Letters 31(11), 1216–1225 (2010)

    Article  Google Scholar 

  9. Kashef, R., Kamel, M.S.: Enhanced Bisecting K-means Clustering using Intermediate Cooperation. Pattern Recognition 42(11), 2557–2569 (2009)

    Article  MATH  Google Scholar 

  10. Rothlauf, F.: Design of Modern Heuristics Principles and Application. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  11. He, Y., Hui, S.C., Sim, Y.: A Novel Ant-based Clustering Approach for Document Clustering. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 537–544. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Zaw, M.M., Mon, E.E.: Web Document Clustering using Cuckoo Search Clustering Algorithm based on Levy Flight. International Journal of Innovation and Applied Studies 4(1), 182–188 (2013)

    Google Scholar 

  13. Karaboga, D., Ozturk, C.: A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing 11(1), 625–657 (2011)

    Article  Google Scholar 

  14. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering Using Firefly Algorithm: Performance Study. Swarm and Evolutionary Computation 1(3), 164–171 (2011)

    Article  Google Scholar 

  15. Yang, X.S.: Nature-inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, United Kingdom (2011)

    Google Scholar 

  16. Yang, X.S., He, X.: Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intelligence 1(1), 36–50 (2013)

    Article  Google Scholar 

  17. Fister, I., Fister Jr., I., Yang, X.S., Brest, J.: A Comprehensive Review of Firefly Algorithms 13, 34–46 (2013)

    Google Scholar 

  18. Hassanzadeh, T., Faez, K., Seyfi, G.: A Speech Recognition System Based on Structure Equivalent Fuzzy Neural Network Trained by Firefly Algorithm. In: International Conference on Biomedical Engineering (ICoBE), pp. 63–67. IEEE (2012)

    Google Scholar 

  19. Horng, M.H., Jiang, T.W.: Multilevel Image Thresholding Selection based on the Firefly Algorithm. In: 7th International Conference on Ubiquitous Intelligence & Computing and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC), pp. 58–63. IEEE (2010)

    Google Scholar 

  20. Adaniya, M.H.A.C., Abrão, T., Proença Jr., M.L.: Anomaly Detection Using Metaheuristic Firefly Harmonic Clustering. Journal of Networks 8(1), 82–91 (2013)

    Article  Google Scholar 

  21. Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly Algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing 12(3), 1180–1186 (2012)

    Article  Google Scholar 

  22. Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., Kusek, M.: A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents. Information Sciences 182(1), 77–92 (2012)

    Article  Google Scholar 

  23. Sayadi, M.K., Hafezalkotob, A., Naini, S.G.J.: Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation. Journal of Manufacturing Systems 32(1), 78–84 (2013)

    Article  Google Scholar 

  24. Mohammed, A.J., Yusof, Y., Husni, H.: Weight-Based Firefly Algorithm for Document Clustering. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng 2013). LNEE, vol. 285, pp. 259–266. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  25. Mohammed, A.J., Yusof, Y., Husni, H.: A Newton’s Universal Gravitation Inspired Firefly Algorithm for Document Clustering. In: Jeong, H.Y., Yen, N.Y., Park, J.J(J.H.) (eds.) Advanced in Computer Science and its Applications. LNEE, vol. 279, pp. 1259–1264. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. 20 Newsgroup Data Set (2006), http://people.csail.mit.edu/20Newsgroup/

  27. Murugesan, K., Zhang, J.: Hybrid Bisect K-means Clustering Algorithm. In: IEEE International Conference on Business Computing and Global Informatization (BCGIN), pp. 216–219. IEEE (2011)

    Google Scholar 

  28. Hassanzadeh, T., Meybodi, M.R.: A New Hybrid Approach for Data Clustering Using Firefly Algorithm and K-means. In: Proceedings of the 16th IEEE CSI International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 007 – 011 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athraa Jasim Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohammed, A.J., Yusof, Y., Husni, H. (2014). Experimental Analysis of Firefly Algorithms for Divisive Clustering of Web Documents. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07692-8_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07691-1

  • Online ISBN: 978-3-319-07692-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics