Skip to main content

A Survey of SOM-Based Active Contour Models for Image Segmentation

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Abstract

Self Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly when dealing with image segmentation as a contour extraction problem. The idea of utilizing the prototypes (weights) of a SOM to model an evolving contour has produced a new class of Active Contour Models (ACMs), known as SOM-based ACMs. Such models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property, and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey paper, the main principles of SOMs and their application in modelling active contours are first highlighted. Then, we review existing SOM-based ACMs with a focus on their advantages and disadvantages in modelling the evolving contour via different kinds of SOMs. Finally, some current research directions are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Venkatesh, Y.V., Kumar Raja, S., Ramya, N.: A novel SOM-based approach for active contour modeling. In: Proc. of the Conf. on Intelligent Sensors, Sensor Networks and Information Processing, pp. 229–234 (2004)

    Google Scholar 

  2. Chen, S., Radke, R.J.: Level set segmentation with both shape and intensity priors. In: Proc. of the 12th IEEE Int. Conf. on Computer Vision, pp. 763–770 (2009)

    Google Scholar 

  3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. of Computer Vision 1(4), 321–331 (1988)

    Google Scholar 

  4. Zhu, G.: Boundary-based image segmentation using binary level set method, Optical Engineering 46(5), article ID: 050501, 3 pages (2007)

    Google Scholar 

  5. Kim, W., Kim, C.: Active contours driven by the salient edge energy model. IEEE Trans. on Image Processing 22(4), 1667–1673 (2013)

    Article  MathSciNet  Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. of Computer Vision 22(1), 61–79 (1997)

    Article  Google Scholar 

  7. Kichenassamy, S., Kumar, A., Olver, P.: Conformal curvature flows: from phase transitions to active vision. Archive for Rational Mechanics and Analysis 134(3), 275–301 (1996)

    Article  MathSciNet  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)

    Article  Google Scholar 

  9. Talu, M.F.: ORACM: Online region-based active contour model. Expert Systems with Applications 40(16), 6233 – 6240 (2013)

    Google Scholar 

  10. Chen, L., Zhou, Y., Wang, Y., Yang, J.: GACV: Geodesic-Aided CV method. Pattern Recognition 39(7), 1391–1395 (2006)

    Article  Google Scholar 

  11. Abdelsamea, M.M., Tsaftaris, S.A.: Active contour model driven by globally signed region pressure force. In: Proc. of the 18th Int. Conf. on Digital Signal Processing, pp. 1–6 (2013)

    Google Scholar 

  12. Tian, Y., Duan, F., Zhou, M., Wu, Z.: Active contour model combining region and edge information. In: Machine Vision and Applications, pp. 1–15 (2011)

    Google Scholar 

  13. Liu, S., Peng, Y.: A local region-based Chan-Vese model for image segmentation. Pattern Recognition 45(7), 2769–2779 (2012)

    Article  Google Scholar 

  14. Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognition 43(4), 1199–1206 (2010)

    Article  Google Scholar 

  15. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. on Image Processing 10(8), 1169–1186 (2001)

    Article  Google Scholar 

  16. Wang, P., Sun, K., Chen, Z.: Local and global intensity information integrated geodesic model for image segmentation. In: Proc. of the Int. Conf. on Computer Science and Electronics Engineering, vol. 2, pp. 129–132 (2012)

    Google Scholar 

  17. Tran, T.-T., Pham, V.-T., Chiu, Y.-J., Shyu, K.-K.: Active contour with selective local or global segmentation for intensity inhomogeneous image. In: Proc. of the 3rd IEEE Int. Conf. on Computer Science and Information Technology, vol. 1, pp. 306–310 (2010)

    Google Scholar 

  18. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing 7(3), 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kohonen, T.: Essentials of the self-organizing map. Neural Networks 37, 52–65 (2013)

    Article  Google Scholar 

  20. Venkatesh, Y.V., Rishikesh, N.: Self-organizing neural networks based on spatial isomorphism for active contour modeling. Pattern Recognition 33(7), 1239–1250 (2000)

    Article  Google Scholar 

  21. Shah-Hosseini, H., Safabakhsh, R.: A TASOM-based algorithm for active contour modeling. Pattern Recognition Letters 24(910), 1361–1373 (2003)

    Article  Google Scholar 

  22. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Computational Physics, 12–49 (1988)

    Google Scholar 

  23. Vantaram, S.R., Saber, E.: Survey of contemporary trends in color image segmentation. J. of Electronic Imaging 21(4), article ID: 040901, 28 pages (2012)

    Google Scholar 

  24. Skakun, S.: A neural network approach to flood mapping using satellite imagery. Computing and Informatics 29(6), 1013–1024 (2010)

    Google Scholar 

  25. Middleton, I., Damper, R.I.: Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Medical Enginering & Physics 26(1), 71–86 (2004)

    Article  Google Scholar 

  26. Venkatesh, Y.V., Kumar Raja, S., Ramya, N.: Multiple contour extraction from graylevel images using an artificial neural network. IEEE Trans. on Image Processing 15(4), 892–899 (2006)

    Article  Google Scholar 

  27. Vasconcelos, G.S., Bastos, C.A.C.M., Tsang, I.R., Cavalcanti, G.D.C.: BSOM network for pupil segmentation. In: Proc. of the IEEE Int. Joint Conf. on Neural Networks, pp. 2704–2709 (2011)

    Google Scholar 

  28. Bastos, C.A.C.M., Tsang, I.R., Vasconcelos, G.S., Cavalcanti, G.D.C.: Pupil segmentation using pulling & pushing and BSOM neural network. In: Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 2359–2364 (2012)

    Google Scholar 

  29. Izadi, M., Safabakhsh, R.: An improved time-adaptive self-organizing map for high-speed shape modeling. Pattern Recognition 42(7), 1361–1370 (2009)

    Article  Google Scholar 

  30. Zeng, D., Zhou, Z., Xie, S.: Coarse-to-fine boundary location with a SOM-like method. IEEE Trans. on Neural Networks 21(3), 481–493 (2010)

    Article  Google Scholar 

  31. Sadeghi, F., Izadinia, H., Safabakhsh, R.: A new active contour model based on the conscience, archiving and mean-movement mechanisms and the SOM. Pattern Recognition Letters 32(12), 1622–1634 (2011)

    Article  Google Scholar 

  32. Ma, Y., Gu, X., Wang, Y.: Contour detection based on self-organizing feature clustering. In: Int. Conf. on Computing, Networking and Communications, vol. 2, pp. 221–226 (2007)

    Google Scholar 

  33. Teng, W.-G., Chang, P.-L.: Identifying regions of interest in medical images using self-organizing maps. J. of Medical Systems 36(5), 2761–2768 (2012)

    Article  Google Scholar 

  34. Yang, Z., Bai, Z., Wu, J., Chen, Y.: Target region location based on texture analysis and active contour model. Trans. of Tianjin University 15(3), 157–161 (2009)

    Article  Google Scholar 

  35. Neagoe, V.-E., Ropot, A.-D.: Concurrent self-organizing maps for pattern classification. In: Proc. of the 1st IEEE Int. Conf. on Cognitive Informatics, pp. 304–312 (2002)

    Google Scholar 

  36. Abdelsamea, M.M., Gnecco, G., Gaber, M.M.: A concurrent SOM-based Chan-Vese model for image segmentation. In: submitted to the 10th Workshop on Self-Organizing Maps (2014) (provisionally accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Abdelsamea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdelsamea, M.M., Gnecco, G., Gaber, M.M. (2014). A Survey of SOM-Based Active Contour Models for Image Segmentation. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics