Skip to main content

A Framework for Classical Petri Net Problems: Conservative Petri Nets as an Application

  • Conference paper
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8489))

  • 1013 Accesses

Abstract

We present a framework based on permutations of firing sequences and on canonical firing sequences to approach computational problems involving classes of Petri nets with arbitrary arc multiplicities. As an example of application, we use these techniques to obtain PSPACE-completeness for the reachability and the covering problems of conservative Petri nets, generalizing known results for ordinary 1-conservative Petri nets. We also prove PSPACE-completeness for the RecLFS and the liveness problems of conservative Petri nets, for which, in case of ordinary 1-conservative Petri nets, PSPACE-membership but no matching lower bound has been known. Last, we show PSPACE-completeness for the containment and equivalence problems of conservative Petri nets. PSPACE-hardness of the problems mentioned above still holds if they are restricted to ordinary 1-conservative Petri nets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for Petri nets and commutative semigroups (preliminary report). In: Proceedings of the 8th ACM Symposium on Theory of Computing (STOC 1976), pp. 50–54. ACM (1976)

    Google Scholar 

  2. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundamenta Informaticae 31(1), 13–25 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Esparza, J., Nielsen, M.: Decibility issues for Petri nets - a survey. Journal of Information Processing and Cybernetics 30(3), 143–160 (1994)

    MATH  Google Scholar 

  4. Hack, M.: The recursive equivalence of the reachability problem and the liveness problem for Petri nets and vector addition systems. In: IEEE Conference Record of the 15th Annual Symposium on Switching and Automata Theory, pp. 156–164 (1974)

    Google Scholar 

  5. Howell, R.R., Jancar, P., Rosier, L.E.: Completeness results for single-path Petri nets. Information and Computation 106(2), 253–265 (1993)

    Article  MathSciNet  Google Scholar 

  6. Howell, R.R., Rosier, L.E.: Completeness results for conflict-free vector replacement systems. Journal of Computer and System Sciences 37(3), 349–366 (1988)

    Article  MathSciNet  Google Scholar 

  7. Howell, R.R., Rosier, L.E., Yen, H.C.: Normal and sinkless Petri nets. In: Csirik, J., Demetrovics, J., Gécseg, F. (eds.) Proceedings of the 1989 International Conference on Fundamentals of Computation Theory (FCT 1989). LNCS, vol. 380, pp. 234–243. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  8. Huynh, D.T.: The complexity of semilinear sets. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 324–337. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  9. Huynh, D.T.: A simple proof for the \(\Sigma_2^p\) upper bound of the inequivalence problem for semilinear sets. Elektronische Informationsverarbeitung und Kybernetik 22, 147–156 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. Theoretical Computer Science 4(3), 277–299 (1977)

    Article  MathSciNet  Google Scholar 

  11. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MathSciNet  Google Scholar 

  12. Lien, Y.E.: A note on transition systems. Information Sciences 10(4), 347–362 (1976)

    Article  Google Scholar 

  13. Lien, Y.E.: Termination properties of generalized Petri nets. SIAM Journal on Computing 5(2), 251–265 (1976)

    Article  MathSciNet  Google Scholar 

  14. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM Journal on Computing 13(3), 441–460 (1984)

    Article  MathSciNet  Google Scholar 

  15. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Mathematics 46(3), 305–329 (1982)

    Article  MathSciNet  Google Scholar 

  16. Mayr, E.W., Weihmann, J.: Completeness results for generalized communication-free Petri nets with arbitrary edge multiplicities. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 209–221. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Teruel, E., Silva, M.: Well-formedness of equal conflict systems. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 491–510. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  18. Watanabe, T., Mizobata, Y., Onaga, K.: Legal firing sequence and related problems of Petri nets. In: Proceedings of the 3rd International Workshop on Petri Nets and Performance Models (PNPM 1989), pp. 277–286 (1989)

    Google Scholar 

  19. Yen, H.C.: On reachability equivalence for BPP-nets. Theoretical Computer Science 179, 301–317 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayr, E.W., Weihmann, J. (2014). A Framework for Classical Petri Net Problems: Conservative Petri Nets as an Application. In: Ciardo, G., Kindler, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2014. Lecture Notes in Computer Science, vol 8489. Springer, Cham. https://doi.org/10.1007/978-3-319-07734-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07734-5_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07733-8

  • Online ISBN: 978-3-319-07734-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics