Abstract
The automated quantitative system analysis in terms of probabilistic model checking (PMC) is nowadays well-established and has been applied successfully in various areas. Recently, we showed how PMC can be applied for the trade-off analysis between several cost and reward functions, such as energy and utility. Besides utility, also the resilience of a system, i.e., the systems capability to operate successfully even in unfavorable conditions, crucially depends on costs invested: It is well-known that better resilience can be achieved, e.g., through introducing redundant components, which however may yield higher energy consumption.
In this paper, we focus on the interplay energy, utility and resilience. The formalization of the resulting trade-offs requires several concepts like quantiles, conditional probabilities and expectations and ratios of cost or reward functions. We present an overview how these quantitative measures for resilience mechanisms can be computed when the resilient systems are modeled either as discrete or continuous-time Markov chains. All the presented concepts of multi-objective reasoning are not supported by state-of-the-art probabilistic model checkers yet. By means of a small case study following the modular redundancy principle, we exemplify a resilience analysis within our prototype implementations.
The authors are supported by the DFG through the collaborative research centre HAEC (SFB 912), the cluster of excellence cfAED, Deutsche Telekom Stiftung, the ESF young researcher groups IMData (100098198) and SREX (100111037), the Graduiertenkolleg QuantLA (1763) the DFG/NWO-project ROCKS, and the EU-FP-7 grant MEALS (295261).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, V., Chandrasekaran, R., Nair, K.: Markov ratio decision processes. Journal of Optimization Theory and Application 21(1) (1977)
Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)
Andrés, M.E., van Rossum, P.: Conditional probabilities over probabilistic and nondeterministic systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 157–172. Springer, Heidelberg (2008)
Baier, C., Cloth, L., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performability assessment by model checking of Markov reward models. Formal Methods in System Design 36(1), 1–36 (2010)
Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Heidelberg (2014)
Baier, C., Daum, M., Engel, B., Härtig, H., Klein, J., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: Locks: Picking key methods for a scalable quantitative analysis. Journal of Computer and System Sciences (to appear, 2014)
Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic model checking for energy-utility analysis. In: Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Panangaden Festschrift. LNCS, vol. 8464, pp. 96–123. Springer, Heidelberg (2014)
Baier, C., Engel, B., Klüppelholz, S., Märcker, S., Tews, H., Völp, M.: A probabilistic quantitative analysis of probabilistic-write/Copy-select. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 307–321. Springer, Heidelberg (2013)
Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014)
Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear temporal logic: Complexity and decidability. In: 29th ACM/IEEE Symposium on Logic in Computer Science, LICS 2014 (2014) (accepted for publication)
Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)
Brázdil, T., Kučera, A., Stražovský, O.: On the Decidability of Temporal Properties of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)
Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)
de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)
de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: 13th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 454–465. IEEE Computer Society (1998)
de Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999)
Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimulation of continuous-time Markov processes. Journal of Logic and Algebraic Programming 56(1-2), 99–115 (2003)
Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy analysis in software product lines. In: 13th International Conference on Modularity (MODULARITY). ACM Press (to appear, 2014)
Gao, Y., Xu, M., Zhan, N., Zhang, L.: Model checking conditional CSL for continuous-time Markov chains. IPL 113(1-2), 44–50 (2013)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)
Haverkort, B.: Performance of Computer Communication Systems: A Model-Based Approach. Wiley (1998)
Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)
Ji, M., Wu, D., Chen, Z.: Verification method of conditional probability based on automaton. Journal of Networks 8(6), 1329–1335 (2013)
Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2) (2011)
Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman and Hall (1995)
Laprie, J.-C.: From dependability to resilience. In: 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN), Page Fast Abstracts, Abstracts, Anchorage, AK (June 2008)
Maruyama, H., Minami, K.: Towards systems resilience. Innovation and Supply Chain Management 7(3) (2013)
Panangaden, P.: Measure and probability for concurrency theorists. Theoretical Computer Science 253(2), 287–309 (2001)
Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons (1994)
Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley & Sons (1980)
Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 353–368. Springer, Heidelberg (2013)
Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)
von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case behavior for ratio objectives. In: International Workshop on Interactions, Games and Protocols (iWIGP). EPTCS, vol. 50, pp. 17–32 (2011)
von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies. Annals of Mathematics Studies, vol. 34, pp. 43–98. Princeton University Press, Princeton (1956)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baier, C., Dubslaff, C., Klüppelholz, S., Leuschner, L. (2014). Energy-Utility Analysis for Resilient Systems Using Probabilistic Model Checking. In: Ciardo, G., Kindler, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2014. Lecture Notes in Computer Science, vol 8489. Springer, Cham. https://doi.org/10.1007/978-3-319-07734-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-07734-5_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07733-8
Online ISBN: 978-3-319-07734-5
eBook Packages: Computer ScienceComputer Science (R0)