Abstract
Process mining aims to discover and analyze processes by extracting information from event logs. Process mining discovery algorithms deal with large data sets to learn automatically process models. As more event data become available there is the desire to learn larger and more complex process models. To tackle problems related to the readability of the resulting model and to ensure tractability, various decomposition methods have been proposed. This paper presents a novel decomposition approach for discovering more readable models from event logs on the basis of a priori knowledge about the event log structure: regular and special cases of the process execution are treated separately. The transition system, corresponding to a given event log, is decomposed into a regular part and a specific part. Then one of the known discovery algorithms is applied to both parts, and finally these models are combined into a single process model. It is proven, that the structural and behavioral properties of submodels are inherited by the unified process model. The proposed discovery algorithm is illustrated using a running example.
This work is supported by the Basic Research Program of the National Research University Higher School of Economics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W.M.P.: Decomposing Process Mining Problems Using Passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012)
van der Aalst, W.M.P.: Decomposing Petri Nets for Process Mining: A Generic Approach. Distributed and Parallel Databases 31(4), 471–507 (2013)
van der Aalst, W.M.P., Aldred, L., Dumas, M., ter Hofstede, A.H.M.: Design and Implementation of the YAWL System. QUT Technical report, FIT-TR-2003-07, Queensland University of Technology, Brisbane (2003)
van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling 9(1), 87–111 (2010)
Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)
Carmona, J.A., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)
Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-Conquer Strategies for Process Mining. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 327–343. Springer, Heidelberg (2009)
Carmona, J., Cortadella, J., Kishinevsky, M.: New Region-Based Algorithms for Deriving Bounded Petri Nets. IEEE Transactions on Computers 59(3), 371–384 (2010)
Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Synthesizing Petri Nets from State-Based Models. In: Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design (ICCAD 1995), pp. 164–171 (1995)
Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets for finite transition systems. IEEE Trans. Computers 47(8), 859–882 (1998)
Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)
van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process Mining: Overview and Outlook of Petri Net Discovery Algorithms. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg (2009)
Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica 27(4), 315–368 (1989)
Kalenkova, A.A., Lomazova, I.A.: Discovery of cancellation regions within process mining techniques. In: CS&P. CEUR Workshop Proceedings, vol. 1032, pp. 232–244. CEUR-WS.org (2013)
Lorenz, R., Juhás, G.: How to Synthesize Nets from Languages: A Survey. In: Proceedings of the Wintersimulation Conference (WSC 2007), pp. 637–647. IEEE Computer Society (2007)
OMG. Business Process Model and Notation (BPMN). Object Management Group, formal/2011-01-03 (2011)
Solé, M., Carmona, J.: Incremental process mining. In: ACSD/Petri Nets Workshops. CEUR Workshop Proceedings, vol. 827, pp. 175–190. CEUR-WS.org (2010)
Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)
Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Quality Metrics for Business Process Models. In: BPM and Workflow Handbook 2007, pp. 179–190. Future Strategies Inc., Lighthouse Point (2007)
Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: ProM 6: The Process Mining Toolkit. In: Proc. of BPM Demonstration Track 2010. CEUR Workshop Proceedings, vol. 615, pp. 34–39 (2010)
van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundamenta Informaticae 94(3), 387–412 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kalenkova, A.A., Lomazova, I.A., van der Aalst, W.M.P. (2014). Process Model Discovery: A Method Based on Transition System Decomposition. In: Ciardo, G., Kindler, E. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2014. Lecture Notes in Computer Science, vol 8489. Springer, Cham. https://doi.org/10.1007/978-3-319-07734-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-07734-5_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07733-8
Online ISBN: 978-3-319-07734-5
eBook Packages: Computer ScienceComputer Science (R0)