Abstract
In this chapter we describe the use of patterns in the analysis of supervised data. We survey the different settings for finding patterns as well as sets of patterns. The pattern mining settings are categorized according to whether they include class labels as attributes in the data or whether they partition the data based on these labels. The pattern set mining settings are categorized along several dimensions, including whether they perform iterative mining or post-processing, operate globally or locally, and whether they use patterns directly or indirectly for prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. C. Aggarwal. On effective classification of strings with wavelets. In KDD, pages 163–172. ACM, 2002.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT Press, 1996. ISBN 0-262-56097-6.
M.-L. Antonie and O. R. Zaïane. Text document categorization by term association. In ICDM, pages 19–26. IEEE Computer Society, 2002.
B. Arunasalam and S. Chawla. CCCS: a top-down associative classifier for imbalanced class distributions. In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, KDD, pages 517–522. ACM, 2006.
M. Atzmüller and F. Puppe. SD-Map-a fast algorithm for exhaustive subgroup discovery. In [16], pages 6–17. ISBN 3-540-45374-1.
S. D. Bay and M. J. Pazzani. Detecting group differences: Mining constrast sets. Data Mining and Knowledge Discovery, 5 (3): 213–246, 2001.
B. Bringmann and A. Zimmermann. Tree2-Decision trees for tree structured data. In A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, editors, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 46–58. Springer, 2005.
B. Bringmann and A. Zimmermann. One in a million: picking the right patterns. Knowledge and Information Systems, 18 (1): 61–81, 2009.
B. Bringmann, S. Nijssen, and A. Zimmermann. Pattern-based classification: A unifying perspective. In A. Knobbe and J. Fürnkranz, editors, From Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09), pages 36–50, 2009.
L. Cerf, D. Gay, N. Selmaoui-Folcher, B. Crémilleux, and J.-F. Boulicaut. Parameter-free classification in multi-class imbalanced data sets. Data Knowl. Eng., 87: 109–129, 2013.
H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In Proceedings of the 23rd International Conference on Data Engineering, pages 716–725. IEEE, 2007.
H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective classification. In Proceedings of the 24th International Conference on Data Engineering, pages 169–178. IEEE, 2008.
S. Chiappa, H. Saigo, and K. Tsuda. A Bayesian approach to graphy regression with relevant subgraph selection. In SDM, pages 295–304. SIAM, 2009.
G. Dong, X. Zhang, L. Wong, and J. Li. Caep: Classification by aggregating emerging patterns. In S. Arikawa and K. Furukawa, editors, Discovery Science, volume 1721 of Lecture Notes in Computer Science, pages 30–42. Springer, 1999. ISBN 3-540-66713-X.
W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu, and O. Verscheure. Direct mining of discriminative and essential frequent patterns via model-based search tree. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 230–238. ACM, 2008. ISBN 978-1-60558-193-4.
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors. Knowledge Discovery in Databases: PKDD 2006,10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18–22, 2006, Proceedings, 2006. Springer. ISBN 3-540-45374-1.
F. B. Galiano, J. C. Cubero, D. Sánchez, and J.-M. Serrano. Art: A hybrid classification model. Machine Learning, 54 (1): 67–92, 2004.
D. Gay, N. Selmaoui, and J.-F. Boulicaut. Pattern-based decision tree construction. In ICDIM, pages 291–296. IEEE, 2007.
H. Grosskreutz, S. Rüping, and S. Wrobel. Tight optimistic estimates for fast subgroup discovery. In W. Daelemans, B. Goethals, and K. Morik, editors, ECML/PKDD (1), volume 5211 of Lecture Notes in Computer Science, pages 440–456. Springer, 2008. ISBN 978-3-540-87478-2.
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, SIGMOD Conference, pages 1–12. ACM, 2000. ISBN 1-58113-218-2.
B. Kavsek and N. Lavrac. Apriori-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20 (7): 543–583, 2006.
S. Kramer and L. De Raedt. Feature construction with version spaces for biochemical applications. In C. E. Brodley and A. P. Danyluk, editors, ICML, pages 258–265. Morgan Kaufmann, 2001. ISBN 1-55860-778-1.
N. Lavrač, B. Kavsek, P. A. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. Journal of Machine Learning Research, 5: 153–188, 2004.
D. Leman, A. Feelders, and A. J. Knobbe. Exceptional model mining. In ECML/PKDD (2), pages 1–16, 2008.
W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple class-association rules. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 2001 IEEE International Conference on Data Mining, pages 369–376, San José, California, USA, Nov. 2001. IEEE Computer Society.
J. Li, G. Dong, K. Ramamohanarao, and L. Wong. A new instance-based lazy discovery and classification system. Machine Learning, 54 (2): 99–124, 2004.
B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pages 80–86, New York City, New York, USA, Aug. 1998. AAAI Press.
D. Meretakis and B. Wüthrich. Extending naïve bayes classifiers using long itemsets. In U. M. Fayyad, S. Chaudhuri, and D. Madigan, editors, KDD, pages 165–174. ACM, 1999. ISBN 1-58113-143-7.
S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning. In Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 226–236, Dallas, Texas, USA, May 2000. ACM.
S. Nijssen and É. Fromont. Optimal constraint-based decision tree induction from itemset lattices. Data Min. Knowl. Discov., 21 (1): 9–51, 2010.
S. Nijssen and J. N. Kok. Multi-class correlated pattern mining. In F. Bonchi and J.-F. Boulicaut, editors, KDID, volume 3933 of Lecture Notes in Computer Science, pages 165–187. Springer, 2005. ISBN 3-540-33292-8.
P. K. Novak, N. Lavrac, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research, 10: 377–403, 2009.
H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 230–238. ACM, 2008., pages 578–586. ISBN 978-1-60558-193-4.
H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost:a mathematical programming approach to graph classification and regression. Machine Learning, 75 (1): 69–89, 2009.
M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. J. Smola, L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt. Discriminative frequent subgraph mining with optimality guarantees. Statistical Analysis and Data Mining, 3 (5): 302–318, 2010.
M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks item sets that matter. In [16], pages 585–592. ISBN 3-540-45374–1.
A. Veloso, W. M. Jr., and M. J. Zaki. Lazy associative classification. In ICDM, pages 645–654. IEEE Computer Society, 2006.
J. Wang and G. Karypis. Harmony: Efficiently mining the best rules for classification. In SDM, 2005.
G. I. Webb. Opus: An efficient admissible algorithm for unordered search. J. Artif. Intell. Res. (JAIR), 3: 431–465, 1995.
M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng., 12 (3): 372–390, 2000.
M. J. Zaki and C. C. Aggarwal. XRules: an effective structural classifier for XML data. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, Proceedings http://www.nakedcapitalism.com/of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 316–325, Washington, DC, USA, Aug. 2003. ACM.
A. Zimmermann and B. Bringmann. Ctc-correlating tree patterns for classification. In J. Han, B. W. Wah, V. Raghavan, X. Wu, and R. Rastogi, editors, Proceedings of the Fifth IEEE International Conference on Data Mining, pages 833–836, Houston, Texas, USA, Nov. 2005. IEEE.
A. Zimmermann and L. De Raedt. Corclass: Correlated association rule mining for classification. In E. Suzuki and S. Arikawa, editors, Proceedings of the 7th International Conference on Discovery Science, pages 60–72, Padova, Italy, Oct. 2004. Springer.
A. Zimmermann and L. De Raedt. Cluster-grouping: from subgroup discovery to clustering. Machine Learning, 77 (1): 125–159, 2009.
A. Zimmermann, B. Bringmann, and U. Rückert. Fast, effective molecular feature mining by local optimization. In J. L. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, editors, ECML/PKDD (3), volume 6323 of Lecture Notes in Computer Science, pages 563–578. Springer, 2010. ISBN 978-3-642-15938-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Zimmermann, A., Nijssen, S. (2014). Supervised Pattern Mining and Applications to Classification. In: Aggarwal, C., Han, J. (eds) Frequent Pattern Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-07821-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-07821-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07820-5
Online ISBN: 978-3-319-07821-2
eBook Packages: Computer ScienceComputer Science (R0)