Abstract
This chapter will provide a detailed survey of frequent pattern mining algorithms. A wide variety of algorithms will be covered starting from Apriori. Many algorithms such as Eclat, TreeProjection, and FP-growth will be discussed. In addition a discussion of several maximal and closed frequent pattern mining algorithms will be provided. Thus, this chapter will provide one of most detailed surveys of frequent pattern mining algorithms available in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The resulting FP-Tree will be a suffix-based trie.
References
R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases, VLDB Conference, pp. 487–499, 1994.
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. ACM SIGMOD Conference, 1993.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules, Advances in Knowledge Discovery and Data Mining, pp. 307–328, 1996.
R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth-first Generation of Long Patterns, ACM KDD Conference, 2000. Also available as IBM Research Report, RC21538, July 1999.
R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm for Generation of Frequent Itemsets, Journal of Parallel and Distributed Computing, 61(3), pp. 350–371, 2001. Also available as IBM Research Report, RC21341, 1999.
C. C. Aggarwal, P. S. Yu. Online Generation of Association Rules, ICDE Conference, 1998.
C. C. Aggarwal, P. S. Yu. A New Framework for Itemset Generation, ACM PODS Conference, 1998.
E. Azkural and C. Aykanat. A Space Optimization for FP-Growth, FIMI workshop, 2004.
Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining Frequent Patterns with Counting Inference. ACM SIGKDD Explorations Newsletter, 2(2), pp. 66–75, 2000.
R. J. Bayardo Jr. Efficiently mining long patterns from databases, ACM SIGMOD Conference, 1998.
J. Blanchard, F. Guillet, R. Gras, and H. Briand. Using Information-theoretic Measures to Assess Association Rule Interestingness. ICDM Conference, 2005.
C. Borgelt, R. Kruse. Induction of Association Rules: Apriori Implementation, Conference on Computational Statistics, 2002. URL
J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A Condensed Representation of Boolean data for the Approximation of Frequency Queries. Data Mining and Knowledge Discovery, 7(1), pp. 5–22, 2003.
D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases, ICDE Conference, 2000. Implementation URL: URL
S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Conference, 1997.
S. Brin, R. Motwani, and C. Silverstein. Beyond Market Baskets: Generalizing Association Rules to Correlations. ACM SIGMOD Conference, 1997.
T. Calders, and B. Goethals. Mining all non-derivable frequent itemsets Principles of Data Mining and Knowledge Discovery, pp. 1–42, 2002.
T. Calders, and B. Goethals. Depth-first Non-derivable Itemset Mining, SDM Conference, 2005.
T. Calders, N. Dexters, J. Gillis, and B. Goethals. Mining Frequent Itemsets in a Stream, Informations Systems, to appear, 2013.
J. H. Chang, and W. S. Lee. Finding Recent Frequent Itemsets Adaptively over Online Data Streams, ACM KDD Conference, 2003.
M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in Data Streams. Automata, Languages and Programming, pp. 693–703, 2002.
G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. FARMER: Finding interesting rule groups in microarray datasets. ACM SIGMOD Conference, 2004.
G. Cong, K.-L. Tan, A. K. H. Tung, X. Xu. Mining Top-k covering Rule Groups for Gene Expression Data. ACM SIGMOD Conference, 2005.
M. El-Hajj and O. Zaiane. COFI-tree Mining: A New Approach to Pattern Growth with Reduced Candidacy Generation. FIMI Workshop, 2003.
F. Geerts, B. Goethals, J. Bussche. A Tight Upper Bound on the Number of Candidate Patterns, ICDM Conference, 2001.
B. Goethals. Survey on frequent pattern mining, Technical report, University of Helsinki, 2003.
R. P. Gopalan and Y. G. Sucahyo. High Performance Frequent Pattern Extraction using Compressed FP-Trees, Proceedings of SIAM International Workshop on High Performance and Distributed Mining, 2004.
K. Gouda, and M. Zaki. Genmax: An efficient algorithm for mining maximal frequent itemsets. Data Mining and Knowledge Discovery, 11(3), pp. 223–242, 2005.
G. Grahne, and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets, IEEE ICDM Workshop on Frequent Itemset Mining, 2004.
G. Grahne, and J. Zhu. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE Transactions on Knowledge and Data Engineering. 17(10), pp. 1347–1362, 2005, vol. 17, no. 10, pp. 1347–1362, October, 2005.
V. Guralnik, and G. Karypis. Parallel tree-projection-based sequence mining algorithms. Parallel Computing, 30(4): pp. 443–472, April 2004.
J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation, ACM SIGMOD Conference, 2000.
J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current Status and Future Directions, Data Mining and Knowledge Discovery, 15(1), pp. 55–86, 2007.
C. Hidber. Online Association Rule Mining, ACM SIGMOD Conference, 1999.
R. Jin, and G. Agrawal. An Algorithm for in-core Frequent Itemset Mining on Streaming Data, ICDM Conference, 2005.
Q. Lan, D. Zhang, and B. Wu. A New Algorithm For Frequent Itemsets Mining Based On Apriori And FP-Tree, IEEE International Conference on Global Congress on Intelligent Systems, pp. 360–364, 2009.
D.-I. Lin, and Z. Kedem. Pincer-search: A New Algorithm for Discovering the Maximum Frequent Set, EDBT Conference, 1998.
J. Liu, Y. Pan, K. Wang. Mining Frequent Item Sets by Opportunistic Projection, ACM KDD Conference, 2002.
G. Liu, H. Lu and J. X. Yu. AFOPT:An Efficient Implementation of Pattern Growth Approach, FIMI Workshop, 2003.
H. Liu, J. Han, D. Xin, and Z. Shao. Mining frequent patterns on very high dimensional data: a top- down row enumeration approach. SDM Conference, 2006.
C. Lucchesse, S. Orlando, and R. Perego. DCI-Closed: A fast and memory efficient algorithm to mine frequent closed itemsets. FIMI Workshop, 2004.
C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining of frequent closed itemsets. IEEE TKDE Journal, 18(1), pp. 21–36, January 2006.
G. Manku, R. Motwani. Approximate Frequency Counts over Data Streams. VLDB Conference, 2002.
H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for discovering association rules. Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pp. 181–192, 1994.
B. Negrevergne, T. Guns, A. Dries, and S. Nijssen. Dominance Programming for Itemset Mining. IEEE ICDM Conference, 2013.
S. Orlando, P. Palmerini, R. Perego. Enhancing the a-priori algorithm for frequent set counting, Third International Conference on Data Warehousing and Knowledge Discovery, 2001.
S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware mining of frequent sets. ICDM Conference, 2002.
F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki. Finding closed patterns in long biological datasets. ACM KDD Conference, 2003.
F Pan, A. K. H. Tung, G. Cong, X. Xu. COBBLER: Combining column and Row Enumeration for Closed Pattern Discovery. SSDBM, 2004.
J.-S. Park, M. S. Chen, and P. S. Yu. An Effective Hash-based Algorithm for Mining Association Rules, ACM SIGMOD Conference, 1995.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT Conference, 1999.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset lattices. Journal of Information Systems, 24(1), pp. 25–46, 1999.
J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets, DMKD Workshop, 2000.
J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang. H-mine: Hyper-structure mining of frequent patterns in large databases, ICDM Conference, 2001.
B. Racz. nonordfp: An FP-Growth Variation without Rebuilding the FP-Tree, FIMI Workshop, 2004.
M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A Perspective on Databases and Data Mining, ACM KDD Conference, 1995.
A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB Conference, 1995.
P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, D. Shah. Turbo-charging Vertical Mining of Large Databases. ACM SIGMOD Conference, pp. 22–33, 2000.
Z. Shi, and Q. He. Efficiently Mining Frequent Itemsets with Compact FP-Tree, IFIP International Federation for Information Processing, V-163, pp. 397–406, 2005.
R. Srikant. Fast algorithms for mining association rules and sequential patterns. PhD thesis, University of Wisconsin, Madison, 1996.
Y. G. Sucahyo and R. P. Gopalan. CT-ITL: Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with PatternGrowth, Proceedings of the 14th Australasian Database Conference, 2003.
Y. G. Sucahyo and R. P. Gopalan. CT-PRO: A Bottom Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structures. FIMI Workshop, 2004.
P.-N. Tan, V. Kumar, amd J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. ACM KDD Conference, 2002.
I. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining Basis for Association Rules using Closed Sets, ICDE Conference, 2000.
H. Toivonen. Sampling large databases for association rules. VLDB Conference, 1996.
T. Uno, M. Kiyomi and H. Arimura. Efficient Mining Algorithms for Frequent/Closed/Maximal Itemsets, FIMI Workshop, 2004.
J. Wang, J. Han. BIDE: Efficient Mining of Frequent Closed Sequences. ICDE Conference, 2004.
J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An efficient algorithm for mining top-k frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering, 17, pp. 652–664, 2002.
J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best strategies for mining frequent closed itemsets. ACM KDD Conference, 2003.
G. I. Webb. Efficient Search for Association Rules, ACM KDD Conference, 2000.
M. J. Zaki. Scalable algorithms for association mining, IEEE Transactions on Knowledge and Data Engineering, 12(3), pp. 372–390, 2000.
M. Zaki, and K. Gouda. Fast vertical mining using diffsets. ACM KDD Conference, 2003.
M. J. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed association rule mining. SDM Conference, 2002.
M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast Discovery of Association Rules. KDD Conference, pp. 283–286, 1997.
C. Zeng, J. F. Naughton, and JY Cai. On Differentially Private Frequent Itemset Mining. In Proceedings of 39th International Conference on Very Large data Bases, 2012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Aggarwal, C., Bhuiyan, M., Hasan, M. (2014). Frequent Pattern Mining Algorithms: A Survey. In: Aggarwal, C., Han, J. (eds) Frequent Pattern Mining. Springer, Cham. https://doi.org/10.1007/978-3-319-07821-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-07821-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07820-5
Online ISBN: 978-3-319-07821-2
eBook Packages: Computer ScienceComputer Science (R0)