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Abstract. Elastic displays offer new ways to interact with multi-dimensional 
data by using the deformation of the surface as a tool to explore, filter, 
structure, or manipulate data. While a large number of prototypes exist, a 
general concept for using this promising technology in real-world application 
domains has not been established. In this paper, we introduce a framework 
about elastic displays and their applications with reference to the interaction 
techniques they provide. We investigate the data applicable to elastic displays 
and the appropriate interaction techniques. Using this approach, it is possible to 
identify strengths and weaknesses of this technology regarding specific 
scenarios, to find commonalities to traditional user interfaces and to explore 
novel concepts for interaction.  
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1 Introduction 

Devices with elastic displays have the potential to establish novel user interfaces by 
extending traditional multi-touch technology with an additional interactive dimension. 
We can utilize the deformation of the display in addition to the touch capabilities of 
the surface. Over the last years, several hardware prototypes have demonstrated the 
power of this technology by analyzing specific use cases. However, there is a need for 
a general model, which describes the strengths and weaknesses of elastic displays, 
regardless of the specific hardware. The additional capabilities of this technology 
require a careful application design. Especially the consideration of specific features 
of the technology is necessary to provide a significant benefit compared to traditional 
devices. We investigate different types of applicable data structures and describe 
possible mappings of suitable interaction techniques. Using this model, it is possible 
to define the abilities and potential issues of elastic displays regarding specific 
application domains.  

2 Related Work 

Recently, researchers have started to focus on interactive surfaces other than rigid ones 
[1, 2]. While there is a considerable body of work in the literature regarding malleable 
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displays [3, 4] and actuated displays [5, 6], the knowledge about elastic displays that 
feature only temporary deformations is scarce [7, 8]. One of the first elastic displays 
presented is the Khronos Projector by Cassinelli and Ishikawa [9]. It is a vertical 
installation of a deformable tissue that is used to fast-forward to a certain position in a 
video when pressed. With the Deformable Workspace, a comprehensive system for 
manipulating virtual 3D objects on vertical elastic displays is available [10]. Other 
examples allow varying haptic feedback are MudPad [11] and GelForce [12].  

The  DepthTouch [13] is one of the first published systems that exhibited a 
tabletop system with an elastic display. The Obake display is a similar prototype 
devised at MIT media lab that demonstrates various interactions with a silicone based 
screen [14]. 

  

Fig. 1. Flexible visualization interface: Utilizing the deformation of the surface for exploration 
of complex data structures 

3 Framework 

The list of related reveals a growing interest in elastic displays. However, the field 
lacks a general model which is needed to analyze applicable interaqction paradigms 
or design systems for productive use. When developing elastic displays, the interface 
needs to be carefully designed. What are the design guidelines? What are the 
weaknesses and what are suitable application domains? Our approach starts with 
identifying suitable data structures for 3D or 2.5D elastic displays. Subsequently, we 
relate interaction techniques to the data structures and create a toolset for interacting 
with elastic displays. The goal is to use the specified tools to explore the opportunities 
of elastic displays regarding concrete scenarios. Accordingly, we can define the 
strengths and weaknesses of the technology in the same context. 

3.1 Data 

Spindler et al. investigated three dimensional data structures in their work with 
PaperLenses and distinguished between volumetric, layered, zoomable, and temporal 
information space [15]. We concentrate on a simplified data-driven point of view and 
distinguish three fundamental data structures suitable for elastic displays. The first 
type of data is zoomable data (2D) (Fig. 2-A). The category contains two-
dimensional data structures, which are variable in their level of detail. They are 
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