Skip to main content

Industrial Implementation of Failure Detection Algorithm in Communication System

  • Conference paper
Computer Networks (CN 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 431))

Included in the following conference series:

Abstract

The paper presents the results of empiric research into testing software algorithm for failure detection of transmission line and network node in industrial communication system. After implemented this algorithm in PLC the results referring to measurements of duration of basic transaction in a system and duration of failure detection on bus A (B) and Slave station were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaj, P., Jasperneite, J., Felser, M.: Computer Communication Within Industrial Distributed Environment-a Survey. IEEE Transactions on Industrial Informatics 9(1), 182–189 (2013), doi:10.1109/TII.2012.2209668

    Article  Google Scholar 

  2. Kwiecień, A.: The improvement of working parameters of the industrial computer networks with cyclic transactions of data exchange by simulation in the physical model. In: The 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, Virginia, USA, vol. 2, pp. 1282–1289 (November 2003) (Curr. ver. April 2004)

    Google Scholar 

  3. Miorandi, D., Vitturi, S.: Analysis of master-slave protocols for real-time-industrial communications over IEEE802.11 WLAN. In: 2nd IEEE International Conference on Industrial Informatics 2004, pp. 143–148 (June 2004)

    Google Scholar 

  4. Conti, M., Donatiello, L., Furini, M.: Design and Analysis of RT-Ring: a protocol for supporting real-time communications. IEEE Transactions on Industrial Electronics, 1214–1226 (December 2002)

    Google Scholar 

  5. Raja, P., Ruiz, L., Decotignie, J.D.: On the necessary real-time conditions for the producer-distributor-consumer model. In: IEEE International Workshop on Factory Communication Systems, WFCS 1995, pp. 125–133 (October 1995)

    Google Scholar 

  6. Modbus-IDA. Modbus Application Protocol Specification V1.1b3, http://modbus.org/docs/ (December 2006)

  7. PROFIBUS Nutzerorganisation e.V. (PNO), PROFIBUS System Description – Technology and Application, Order number 4.332 (ver. November 2010)

    Google Scholar 

  8. PACSystemsTM Hot Standby CPU Redundancy, GE Fanuc Intelligent Platforms. doc. no: GFK-2308C (March 2009)

    Google Scholar 

  9. Genius I/O System and Communications. GE Fanuc Automation, doc. no: GEK-90486f1 (November 1994)

    Google Scholar 

  10. Decotignie, J.-D.: Ethernet-Based Real-Time and Industrial Communications. Proceedings of the IEEE, 1102–1117 (June 2005)

    Google Scholar 

  11. Siemens. Simatic PROFINET description of the system, Siemens, doc. no: A5E00298288-04, Warsaw (2009)

    Google Scholar 

  12. Modbus-IDA. Modbus Messaging on TCP/IP Implementation Guide V1.0b (October 2006), http://modbus.org/docs/

  13. Parker Automation, EtherNet/IP Specification: ACR Series Products (March 2005)

    Google Scholar 

  14. Ethernet POWERLINK Standardisation Group, EPSG Draft Standard 301, Ethernet POWERLINK, Communication Profile Specification, Ver. 1.20. EPSG (2013)

    Google Scholar 

  15. CC-Link Partner Association, CC-Link IE Field, Ethernet-based Open Network, CLPA (June 2010)

    Google Scholar 

  16. Sean, J.: Vincent Fieldbus Inc., Foundation Fieldbus High Speed Ethernet Control System. Fieldbus Inc. (2001)

    Google Scholar 

  17. Felser, M.: Real-Time Ethernet-Industry Prospective. Proceedings of the IEEE 93(6), 1118–1129 (2005)

    Article  Google Scholar 

  18. Kirrmann, H., Weber, K., Kleineberg, O., Weibel, H.: Seamless and low-cost redundancy for substation automation systems (high availability seamless redundancy, HSR). In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–7 (July 2011)

    Google Scholar 

  19. Neves, F.G.R., Saotome, O.: Comparison between Redundancy Techniques for Real Time Applications. In: Fifth International Conference on Information Technology: New Generations, ITNG 2008, pp. 1299–1300 (April 2008)

    Google Scholar 

  20. Kirrmann, H., Hansson, M., Muri, P.: IEC 62439 PRP: Bumpless recovery for highly available, hard real-time industrial networks. In: IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2007, pp. 1396–1399 (September 2007)

    Google Scholar 

  21. Wisniewski, L., Hameed, M., Schriegel, S., Jasperneite, J.: A survey of ethernet redundancy methods forreal-time ethernet networks and its possible improvements. In: Proc. Fieldbuses and Networks in Industrial and Embedded Systems (FET 2009), vol. 8, pp. 163–170 (May 2009)

    Google Scholar 

  22. IEC 62439, Committee Draft for Vote (CDV): Industrial communication networks: high availability automation networks. Entitled Parallel Redundancy Protocol, ch. 6 (April 2007)

    Google Scholar 

  23. IEC 62439, Committee Draft for Vote (CDV): Industrial communication networks: high availability automation networks. entitled Media Redundancy Protocol based on a ring topology, ch. 5 (April 2007)

    Google Scholar 

  24. Sidzina, M., Kwiecień, B.: Basic research of failure detection algorithms of transmission line and equipment in a communication system with a dual bus. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 166–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Sidzina, M., Kwiecień, B.z.: The Algorithms of Transmission Failure Detection in Master-Slave Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 289–298. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Kwiecień, A., Sidzina, M.: Dual Bus as a Method for Data Interchange Transaction Acceleration in distributed Real Time Systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, vol. 39, pp. 252–263. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Kwiecień, A., Stój, J.: The Cost of Redundancy in Distributed Real-Time Systems in Steady State. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 106–120. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kwiecień, B., Sidzina, M., Hrynkiewicz, E. (2014). Industrial Implementation of Failure Detection Algorithm in Communication System. In: Kwiecień, A., Gaj, P., Stera, P. (eds) Computer Networks. CN 2014. Communications in Computer and Information Science, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-07941-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07941-7_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07940-0

  • Online ISBN: 978-3-319-07941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics