Skip to main content

Inference of Boolean Networks from Gene Interaction Graphs Using a SAT Solver

  • Conference paper
Algorithms for Computational Biology (AlCoB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8542))

Included in the following conference series:

Abstract

Boolean networks are important models of gene regulatory networks. Such models are sometimes built from: (1) a gene interaction graph and (2) a set of biological constraints. A gene interaction graph is a directed graph representing positive and negative gene regulations. Depending on the biological problem being solved, the set of biological constraints can vary, and may include, for example, a desired set of stationary states. We present a symbolic, SAT-based, method for inferring synchronous Boolean networks from interaction graphs augmented with constraints. Our method first constructs Boolean formulas in such a way that each truth assignment satisfying these formulas corresponds to a Boolean network modeling the given information. Next, we employ a SAT solver to obtain desired Boolean networks. Through a prototype, we show results illustrating the use of our method in the analysis of Boolean gene regulatory networks of the Arabidopsis thaliana root stem cell niche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposium on Biocomputing, vol. 4, pp. 17–28 (1999)

    Google Scholar 

  2. Alvarez-Buylla, E.R., Benítez, M., Corvera-Poiré, A., Candor, A.C., de Folter, S., de Buen, A.G., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R.V., Pineiro-Nelson, A., Sánchez-Corrales, Y.E.: Flower development. The Arabidopsis Book p. 8:e0999 (2010), doi:10.1199/tab.0999

    Google Scholar 

  3. Azpeitia, E., Benítez, M., Vega, I., Villarreal, C., Alvarez-Buylla, E.R.: Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst. Biol. 4(134) (2010)

    Google Scholar 

  4. Azpeitia, E., Weinstein, N., Benítez, M., Mendoza, L., Alvarez-Buylla, E.R.: Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Frontiers in Plant Science 4(10) (2013), doi:10.3389/fpls.2013.00110

    Google Scholar 

  5. Berestovsky, N., Nakhleh, L.: An evaluation of methods for inferring Boolean networks from time-series data. PloS One 8(6), e66031 (2013)

    Google Scholar 

  6. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

    Google Scholar 

  7. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2), e1672 (2008), doi:10.1371/journal.pone.0001672

    Google Scholar 

  8. Dubrova, E., Teslenko, M.: A SAT-based algorithm for computing attractors in synchrounous Boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(5), 1393–1399 (2011)

    Article  Google Scholar 

  9. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a genetic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131 (2006)

    Google Scholar 

  10. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224(5215), 177–178 (1969)

    Article  Google Scholar 

  11. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(56) (2006), doi:10.1186/1471-2105-7-56

    Google Scholar 

  12. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks under the Boolean network model. Machine Learning 52(1-2), 147–167 (2003)

    Article  MATH  Google Scholar 

  13. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  14. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium on Biocomputing, vol. 3, pp. 18–29 (1998)

    Google Scholar 

  15. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modelling 3(13) (2006)

    Google Scholar 

  16. Nakajima, K., Sena, G., Nawy, T., Benfey, P.: Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853), 307–3011 (2001)

    Article  Google Scholar 

  17. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating Boolean networks with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025 (2005)

    Article  Google Scholar 

  19. Richard, A., Rossignol, G., Comet, J.P., Bernot, G., Guespin-Michel, J., Merieau, A.: Boolean models of biosurfactants production in Pseudomonas fluorescens. PLoS One 7(1), e24651 (2012), http://dx.doi.org/10.1371/journal.pone.0024651

  20. Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network utilizing SAT algorithms. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 92(2), 493–501 (2009)

    Article  Google Scholar 

  21. Welch, D., Hassan, H., Blilou, I., Immink, R., Heidstra, R., Scheres, B.: Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21(17), 2196–2204 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosenblueth, D.A., Muñoz, S., Carrillo, M., Azpeitia, E. (2014). Inference of Boolean Networks from Gene Interaction Graphs Using a SAT Solver. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Algorithms for Computational Biology. AlCoB 2014. Lecture Notes in Computer Science(), vol 8542. Springer, Cham. https://doi.org/10.1007/978-3-319-07953-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07953-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07952-3

  • Online ISBN: 978-3-319-07953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics