Skip to main content

Finding Robust Minimum Cuts

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8546))

Included in the following conference series:

  • 794 Accesses

Abstract

We study the minimum cut problem in the presence of uncertainty and show how to apply a novel robust optimization approach, which aims to exploit the similarity in subsequent graph measurements or similar graph instances, without posing any assumptions on the way they have been obtained. With experiments we show that the approach works well when compared to other approaches that are also oblivious towards the relationship between the input datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buhmann, J.M., Mihalák, M., Šrámek, R., Widmayer, P.: Robust optimization in the presence of uncertainty. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 505–514. ACM, New York (2013)

    Google Scholar 

  2. Botafogo, R.A.: Cluster Analysis for Hypertext Systems. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 116–125. ACM (1993)

    Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  4. Ramanathan, A., Colbourn, C.J.: Counting almost minimum cutsets with reliability applications. Mathematical Programming 39(3), 253–261 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer (2007)

    Google Scholar 

  6. Kall, P., Mayer, J.: Stochastic Linear Programming: Models, Theory, and Computation. Springer (2005)

    Google Scholar 

  7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press (October 2009)

    Google Scholar 

  8. Bilu, Y., Linial, N.: Are stable instances easy? In: Proceedings of the First Symposium on Innovations in Computer Science (ICS), pp. 332–341 (2010)

    Google Scholar 

  9. Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of steiner trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Mihalák, M., Schöngens, M., Šrámek, R., Widmayer, P.: On the complexity of the metric TSP under stability considerations. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 382–393. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Mihalák, M., Šrámek, R.: Counting approximately-shortest paths in directed acyclic graphs (2013), http://arxiv.org/abs/1304.6707

  12. Dinits, E.A., Karzanov, A.V., Lomonosov, V.: On the Structure of a Family of Minimal Weighted Cuts in a Graph (1976)

    Google Scholar 

  13. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-out algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21–30 (1993)

    Google Scholar 

  14. Scott Provan, J., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM Journal on Computing 12(4), 777–788 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undirected network. SIAM Journal on Discrete Mathematics 10(3), 469–481 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of the ACM 43(4), 601–640 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geissmann, B.: Approximation set optimization for minimum cut (August 2012), http://www.100acrewood.org/~rasto/publications/ThesisBarbaraGeissmann.pdf

  18. Market rates online (August 2012), http://www.marketratesonline.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geissmann, B., Šrámek, R. (2014). Finding Robust Minimum Cuts. In: Gu, Q., Hell, P., Yang, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2014. Lecture Notes in Computer Science, vol 8546. Springer, Cham. https://doi.org/10.1007/978-3-319-07956-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07956-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07955-4

  • Online ISBN: 978-3-319-07956-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics