Skip to main content

Protein Name Recognition Based on Dictionary Mining and Heuristics

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8546))

Included in the following conference series:

  • 753 Accesses

Abstract

We propose a novel method that integrates dictionary, heuristics and data mining approaches to efficiently and effectively recognize exact protein names from the literature. According to the protein name dictionary and heuristic rules published in related studies, core tokens of protein names can be efficiently detected. However, exact boundaries of protein names are hard to be identified. By regarding tokens of a protein name as items within a transaction, we apply mining associations to discover significant sequential patterns (SSPs) from the protein name dictionary. Based on SSPs, protein name parts are extended from core tokens to left and right boundaries for correctly recognizing the protein name. Based on Yapex101 corpus, Protein Name Recognition System (PNRS) achieves the F-score (74.49%) better than existing systems and papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD Conference, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of International Conference on Very Large Databases, Santiago, Chile, pp. 487–499 (September 1994)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of International Conference on Data Engineering, Taipei, Taiwan, pp. 3–14 (March 1995)

    Google Scholar 

  4. Chang, J.T., Schutze, H., Altman, R.: GAPSCORE: finding gene and protein names one word at a time. Bioinformatics 20, 216–225 (2004)

    Article  Google Scholar 

  5. Collier, N., Nobata, C., Tsujii, J.: Extracting the names of genes and gene products with a hidden markov model. In: Proceedings of the 18th International Conference on Computational Linguistics, pp. 201–207 (2000)

    Google Scholar 

  6. Egorov, S., Yuryev, A., Daraselia, N.: A simple and practical dictionary-based approach for identification of proteins in MEDLINE abstracts. Journal of the American Medical Informatics Association 11(3), 174–178 (2004)

    Article  Google Scholar 

  7. Franzen, K., Eriksson, G., Olsson, F., Asker, L., Liden, P., Cöster, J.: Protein names and how to find them. International Journal of Medical Informatics 67(3), 49–61 (2002)

    Article  Google Scholar 

  8. Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Toward information extraction: identifying protein names from biological papers. In: Proceedings of the 3rd Pacific Symposium on Biocomputing, pp. 707–718 (1998)

    Google Scholar 

  9. Hanisch, D., Fluck, J., Mevissen, H., Zimmer, R.: Playing biology’s name game: Identifying protein names in scientific text. In: Proceedings of the 8th Pacific Symposium on Biocomputing, pp. 403–414 (2003)

    Google Scholar 

  10. Huang, M.L., Zhu, X.Y., Hao, Y., Payan, D.G., Qu, K.B., Li, M.: Discovering patterns to extract protein-protein interactions from full texts. Bioinformatics 20, 3604–3612 (2004)

    Article  Google Scholar 

  11. Kazama, J., Makino, T., Ohta, Y., Tsujii, J.: Tuning support vector machines for biomedical named entity recognition. In: Proceedings of the ACL 2002 Workshop on Natural Language Processing in the Biomedical Domain, pp. 1–8 (2002)

    Google Scholar 

  12. Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C.: Using BLAST for identifying gene and protein names in journal articles. Gene 259(1-2), 245–252 (2000)

    Article  Google Scholar 

  13. Kou, Z., Cohen, W.W., Murphy, R.F.: High-recall protein entity recognition using a dictionary. Bioinformatics 21, i266–i273 (2005)

    Google Scholar 

  14. Lin, S.-H., Shih, C.-S., Chen, M.C., Ho, J.-M., Ko, M.-T., Huang, Y.-M.: Extracting Classification Knowledge of Internet Documents: A Semantics Approach. In: Proceedings of the 21st ACM SIGIR Conference, pp. 241–249 (1998)

    Google Scholar 

  15. Lipman, D.J., Pearson, W.R.: Rapid and sensitive protein similarity searches. Science 227, 1435–1441 (1985)

    Article  Google Scholar 

  16. Liu, H., Hu, Z.-Z., Zhang, J., Wu, C.: BioThesaurus: a web-based thesaurus of protein and gene names. Bioinformatics 22(1), 103–105 (2006)

    Article  Google Scholar 

  17. Malik, R., Franke, L., Siebes, A.: Combination of text-mining algorithms increases the performance. Bioinformatics 22, 2151–2157 (2006)

    Article  Google Scholar 

  18. Mika, S., Rost, B.: Protein names precisely peeled off free text. Bioinformatics 20, 241–247 (2004)

    Article  Google Scholar 

  19. Nobata, C., Collier, N., Tsujii, J.: Automatic term identification and classification in biology texts. In: Proceedings of the 5th Natural Language Pacific Rim Symposium, pp. 369–375 (1999)

    Google Scholar 

  20. Salton, G., McGill, M.J. (1983) Introduction to Modern Information Retrieval. McGraw-Hill (1983)

    Google Scholar 

  21. Seki, K., Mostafa, J.: An approach to protein name extraction using heuristics and a dictionary. In: Proceedings of the American Society for Information Science and Technology Annual Conference, ASIST (2003)

    Google Scholar 

  22. Tanabe, L., Wilbur, W.J.: Tagging gene and protein names in biomedical texts. Bioinformatics 18, 1124–1132 (2003)

    Article  Google Scholar 

  23. Tsai, T.-H., Chou, W.-C., Wu, S.-H., Sung, T.-Y., Hsiang, J., Hsu, W.-L.: Integrating linguistic knowledge into a conditional random field framework to identify biomedical named entities. Expert Systems with Applications 30, 117–128 (2006)

    Article  Google Scholar 

  24. Yeganova, L., Smith, L., Wilbur, W.J.: Identification of related gene/protein names based on an HMM of name variations. Computational Biology and Chemistry 28(2), 97–107 (2004)

    Article  MATH  Google Scholar 

  25. Zhou, G.D., Zhang, J., Su, J., Shen, D., Tan, C.L.: Recognizing names in biomedical texts: A machine learning approach. Bioinformatics 20(7), 1178–1190 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lin, SH., Ding, SH., Zeng, WS. (2014). Protein Name Recognition Based on Dictionary Mining and Heuristics. In: Gu, Q., Hell, P., Yang, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2014. Lecture Notes in Computer Science, vol 8546. Springer, Cham. https://doi.org/10.1007/978-3-319-07956-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07956-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07955-4

  • Online ISBN: 978-3-319-07956-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics