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Abstract. The Hospitals / Residents problem with Couples (hrc) is a
generalisation of the classical Hospitals / Residents problem (hr) that
is important in practical applications because it models the case where
couples submit joint preference lists over pairs of (typically geographi-
cally close) hospitals. In this paper we give a new NP-completeness result
for the problem of deciding whether a stable matching exists, in highly
restricted instances of hrc, and also an inapproximability bound for find-
ing a matching with the minimum number of blocking pairs in equally
restricted instances of hrc. Further, we present a full description of the
first Integer Programming model for finding a maximum cardinality sta-
ble matching in an instance of hrc and we describe empirical results
when this model applied to randomly generated instances of hrc.

1 Introduction

The Hospitals / Residents Problem. The Hospitals / Residents problem
(hr) is a many-to-one allocation problem. An instance of hr consists of two
groups of agents – one containing hospitals and one containing residents. Every
hospital expresses a linear preference over some subset of the residents, its prefer-
ence list. The residents in a hospital’s preference list are its acceptable partners.
Further, every hospital has a capacity, cj , the maximum number of posts it has
available to match with residents. Every resident expresses a linear preference
over some subset of the hospitals, his acceptable hospitals.

The preferences expressed in this fashion are reciprocal: if a resident ri is
acceptable to a hospital hj , then hj is also acceptable to ri, and vice versa.
A many-to-one matching between residents and hospitals is sought, which is a

? A preliminary version of this paper appeared in the Proceedings of OR 2013.
?? Supported by the Hungarian Academy of Sciences under its Momentum Programme

(LD-004/2010) and also by OTKA grant no. K108673.
? ? ? Supported by Engineering and Physical Sciences Research Council grant

EP/K010042/1.
† Supported by a SICSA Prize PhD Studentship.
‡ Email i.mcbride.1@research.gla.ac.uk.



II Péter Biró et al.

set of acceptable resident-hospital pairs such that each resident appears in at
most one pair and each hospital hj at most cj pairs. If a resident ri appears
in some pair of M , ri is said to be assigned in M and unassigned otherwise.
Any hospital assigned fewer residents than its capacity in some matching M is
under-subscribed in M .

A matching is stable if it admits no blocking pair. Following the definition
in [10], a blocking pair consists of a mutually acceptable resident-hospital pair
(r, h) such that both of the following hold: (i) either r is unassigned, or r prefers
h to his assigned hospital; (ii) either h is under-subscribed in the matching, or h
prefers r to at least one of its assigned residents. Were such a pair to exist, they
could form a pairing outside of the matching, undermining its integrity [20].

It is known that every instance of hr admits at least one stable matching
and such a matching may be found in time linear in the size of the instance [10].
Also, for an arbitrary hr instance I, any resident that is assigned in one stable
matching in I is assigned in all stable matchings in I, moreover any hospital that
is under-subscribed in some stable matching in I is assigned exactly the same
set of residents in every stable matching in I [11, 20,21].

hr can be viewed as an abstract model of the matching process involved
in a centralised matching scheme such as the National Resident Matching Pro-
gram (NRMP) [18] through which graduating medical students are assigned to
hospital posts in the USA. A similar process was used until recently to match
medical graduates to Foundation Programme places in Scotland, called the Scot-
tish Foundation Allocation Scheme (SFAS) [13]. Analogous allocation schemes
having a similar underlying problem model exist around the world, both in the
medical sphere, e.g. in Canada [9], Japan [14], and beyond, e.g. in higher educa-
tion allocation in Hungary [5].

The Hospitals / Residents Problem with Couples. Centralised match-
ing schemes such as the NRMP and the SFAS have had to evolve to accommodate
couples who wish to be allocated to (geographically) compatible hospitals. The
capability to take account of the joint preferences of couples has been in place
in the NRMP context since 1983 and since 2009 in the case of SFAS. In schemes
where the agents may be involved in couples, the underlying allocation problem
can modelled by the so-called Hospitals / Residents problem with Couples (hrc).

As in the case of hr, an instance of hrc consists of a set of hospitals H and
a set of residents R. The residents in R are partitioned into two sets, S and S′.
The set S consists of single residents and the set S′ consists of those residents
involved in couples. There is a set C = {(ri, rj) : ri, rj ∈ S′} of couples such that
each resident in S′ belongs to exactly one pair in C.

Each single resident ri ∈ S expresses a linear preference order over his ac-
ceptable hospitals. Each pair of residents (ri, rj) ∈ C expresses a joint linear
preference order over a subset A of H × H where (hp, hq) ∈ A represents the
joint assignment of ri to hp and rj to hq. The hospital pairs in A represent those
joint assignments that are acceptable to (ri, rj), all other joint assignments being
unacceptable to (ri, rj).
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Each hospital hj ∈ H expresses a linear preference order over those residents
who find hj acceptable, either as a single resident or as part of a couple. As in
the hr case, each hospital hj ∈ H has a capacity, cj .

A many-to-one matching between residents and hospitals is sought, which
is defined as for hr with the additional restriction that each couple (ri, rj) is
either jointly unassigned, meaning that both ri and rj are unassigned, or jointly
assigned to some pair (hk, hl) that (ri, rj) find acceptable.As in hr, we seek a
stable matching, which guarantees that no resident and hospital, and no couple
and pair of hospitals, have an incentive to deviate from their assignments and
become assigned to each other.

Roth [20] considered stability in the hrc context although did not define the
concept explicitly. Whilst Gusfield and Irving [12] defined stability in hrc, their
definition neglected to deal with the case that both members of a couple may wish
to be assigned to the same hospital. Manlove and McDermid [16] extended their
definition to deal with this possibility (however both definitions are equivalent
in the case that no pair of the form (hp, hp) appears in any couple’s preference
list). We adopt Manlove and McDermid’s stability definition in this paper, and
now define it formally as follows.

Definition 1 ([16]) A matching M is stable if none of the following holds:

1. The matching is blocked by a hospital hj and a single resident ri, as in the
classical HR problem.

2. The matching is blocked by a couple (ri, rj) and a hospital hk such that either
(a) (ri, rj) prefers (hk,M(rj)) to (M(ri),M(rj)), and hk is either under-

subscribed in M or prefers ri to some member of M(hk)\{rj} or
(b) (ri, rj) prefers (M(ri), hk) to (M(ri),M(rj)), and hk is either under-

subscribed in M or prefers rj to some member of M(hk)\{ri}
3. The matching is blocked by a couple (ri, rj) and (not necessarily distinct)

hospitals hk 6= M(ri), hl 6= M(rj); that is, (ri, rj) prefers the joint assign-
ment (hk, hl) to (M(ri),M(rj)), and either
(a) hk 6= hl, and hk (respectively hl) is either under-subscribed in M or

prefers ri (respectively rj) to at least one of its assigned residents in M ;
or

(b) hk = hl, and hk has at least two free posts in M , i.e., ck − |M(hk)| ≥ 2;
or

(c) hk = hl, and hk has one free post in M , i.e., ck − |M(hk)| = 1, and hk
prefers at least one of ri, rj to some member of M(hk); or

(d) hk = hl, hk is full in M , hk prefers ri to some rs ∈ M(hk), and hk
prefers rj to some rt ∈M(hk)\{rs}.

Existing Algorithmic Results for hrc. In contrast with hr, an instance
of hrc need not admit a stable matching [20]. Also an instance of hrc may
admit stable matchings of differing sizes [2]. Further, the problem of deciding
whether a stable matching exists in an instance of hrc is NP-complete, even in
the restricted case where there are no single residents and all of the hospitals
have only one available post [17,19].
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In many practical applications of hrc the residents’ preference lists are short.
Let (α, β)-hrc denote the restriction of hrc in which each single resident’s
preference list contains at most α hospitals, each couple’s preference list contains
at most α pairs of hospitals and each hospital’s preference list contains at most
β residents. (α, β)-hrc is hard even for small values of α and β: Manlove and
McDermid [16] showed that (3, 6)-hrc is NP-complete.

Since the existence of an efficient algorithm for finding a stable matching,
or reporting that none exists, in an instance of hrc is unlikely, in practical
applications such as SFAS and NRMP, stable matchings are found by applying
heuristics [3,6,22]. However, neither the SFAS heuristic, nor the NRMP heuristic
guarantee to terminate and output a stable matching, even in instances where
a stable matching does exist. Hence, a method which guarantees to find a max-
imum cardinality stable matching in an arbitrary instance of hrc, where one
exists, might be of considerable interest. For further results on hrc the reader
is referred to [7] and [15].

Contribution of this Work. In this paper, we present in Section 2 a new
NP-completeness result for the problem of deciding whether there exists a stable
matching in an instance of (2, 2)-hrc where there are no single residents and all
hospitals have capacity 1. This is the most restricted case of hrc currently
known for which NP-completeness holds. A natural way to try to cope with
this complexity is to approximate a matching that is ‘as stable as possible’, i.e.,
admits the minimum number of blocking pairs [1]. Let min-bp-hrc denote the
problem of finding a matching with the minimum number of blocking pairs,
given an instance of hrc, and let (α, β)-min-bp-hrc denote the restriction to
instances of (α, β)-hrc. We prove that (2, 2)-min-bp-hrc is not approximable
within n1−ε1 , where n1 is the number of residents in a given instance, for any
ε > 0, unless P = NP . Further in Section 3 we present a description of the
first Integer Programming (IP) model for finding a maximum cardinality stable
matching or reporting that none exists in an arbitrary instance of hrc. Then in
Section 4 we present elements of an empirical study of this model as applied to
randomly generated instances.

2 Complexity Results

In this section we present hardness results for finding and approximating stable
matchings in instances of hrc. For space reasons all of the proofs are omitted
but appear in full in [8], a technical report by the same authors. We begin
by establishing NP-completness for the problem of deciding whether a stable
matching exists in a highly restricted instance of hrc. Our proof involves a
reduction from (2,2)-e3-sat, the problem of deciding, given a Boolean formula
B in CNF over a set of variables V , whether B is satisfiable, where B has the
following properties: (i) each clause contains exactly 3 literals and (ii) for each
vi ∈ V , each of literals vi and v̄i appears exactly twice in B. Berman et al. [4]
have shown that (2,2)-e3-sat is NP-complete.



The Hospitals / Residents Problem with Couples V

Theorem 1. Given an instance of (2, 2)-hrc, the problem of deciding whether
there exists a stable matching is NP-complete. The result holds even if there are
no single residents and each hospital has capacity 1.

We now turn to min-bp-hrc. Clearly Theorem 1 implies that this problem is
NP-hard. By chaining together instances of (2, 2)-hrc constructed in the proof of
Theorem 1, we arrive at a gap-introducing reduction which establishes a strong
inapproximability result for min-bp-hrc under the same restrictions as in The-
orem 1.

Theorem 2. (2, 2)-min-bp-hrc is not approximable within n1−ε1 , where n1 is
the number of residents in a given instance, for any ε > 0, unless P = NP ,
even if there are no single residents and each hospital has capacity 1.

3 An IP Formulation for hrc

In this section we describe an IP model which finds a maximum cardinality stable
matching in an arbitrary instance of hrc, or reports that no stable matching
exists. The variables and constraints required to construct the model are shown
below; a detailed proof of the correctness of the model is omitted due to space
restrictions, but is presented in full in [8].

Let I be an instance of hrc with residents R = {r1, r2, . . . , rn1
} and hospitals

H = {h1, h2, . . . , hn2
}. Without loss of generality, suppose residents r1, r2 . . . r2c

are in couples. Again, without loss of generality, suppose that the couples are
(r2i−1, r2i) (1 ≤ i ≤ c). Suppose that the joint preference list of a couple ci =
(r2i−1, r2i) is:

ci : (hα1 , hβ1), (hα2 , hβ2) . . . (hαl
, hβl

).

From this list we create the following projected preference lists for r2i−1 and r2i:

r2i−1 : hα1 , hα2 . . . hαl
r2i : hβ1 , hβ2 . . . hβl

.

Let l(ci) denote the length of the preference list of ci, and let l(r2i−1) and
l(r2i) denote the lengths of the projected preference lists of r2i−1 and r2i respec-
tively. Then l(r2i−1) = l(r2i) = l(ci). A given hospital hj may appear more than
once in the projected preference list of a resident in a couple ci = (r2i−1, r2i).

Let the single residents be r2c+1, r2c+2 . . . rn1
, where each single resident ri,

has a preference list of length l(ri) consisting of individual hospitals hj ∈ H.
Each hospital hj ∈ H has a preference list of individual residents ri ∈ R of
length l(hj). Further, each hospital hj ∈ H has capacity cj ≥ 1, the number of
residents with which it may match.

Let J be the following IP formulation of I. In J , for each i (1 ≤ i ≤ n1) and
p (1 ≤ p ≤ l(ri)), define a variable xi,p such that

xi,p =

{
1 if ri is assigned to their pth choice hospital
0 otherwise.
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For p = l(ri)+1 define a variable xi,p whose intuitive meaning is that resident
ri is unassigned. Therefore we also have

xi,l(ri)+1 =

{
1 if ri is unassigned
0 otherwise.

Let X = {xi,p : 1 ≤ i ≤ n1 ∧ 1 ≤ p ≤ l(ri) + 1}. As part of the model, for all
xi,p ∈ X, we enforce xi,p ∈ {0, 1}. Let pref(ri, p) denote the hospital at position
p of a single resident ri’s preference list or on the projected preference list of
coupled resident where 1 ≤ i ≤ n1 and 1 ≤ p ≤ l(ri). Let pref((r2i, r2i−1), p)
denote the hospital pair at position p on the joint preference list of (r2i−1, r2i).

For an acceptable resident-hospital pair (ri, hj), let rank(hj , ri) = q denote
the rank which hospital hj assigns resident ri where 1 ≤ j ≤ n2, 1 ≤ i ≤ n1
and 1 ≤ q ≤ l(hj). Thus, rank(hj , ri) is equal to the number of residents that
hj prefers to ri plus one.

Further, for i (1 ≤ i ≤ n1), j (1 ≤ j ≤ n2), p (1 ≤ p ≤ l(ri)) and q (1 ≤
q ≤ l(hj)) let the set R(hj , q) contain resident integer pairs (ri, p) such that
rank(hj , ri) = q and pref(ri, p) = hj . Hence:

R(hj , q) = {(ri, p) ∈ R×Z : rank(hj , ri) = q ∧ 1 ≤ p ≤ l(ri)∧ pref(ri, p) = hj}.

Intuitively, the set R(hj , q) contains the resident-position pairs (ri, p) such that ri
is assigned a rank of q (1 ≤ q ≤ l(hj)) by hj and hj is in position p (1 ≤ p ≤ l(ri))
on ri’s preference list.

Let A = {αj,q : 1 ≤ j ≤ n2 ∧ 1 ≤ q ≤ l(hj)} and further, for all αj,q ∈ A,
we enforce αj,q ∈ {0, 1}. Similarly, Let B = {βj,q : 1 ≤ j ≤ n2 ∧ 1 ≤ q ≤ l(hj)}
and again, for all βj,q ∈ B, we enforce βj,q ∈ {0, 1}. The intuitive meaning of
the variables αj,q and βj,q will be given later.

We now introduce the constraints that belong to the model. The text in bold
before a constraint definition below shows the part of Definition 1 with which
the constraint corresponds. Hence, a constraint preceded by ‘Stability 1’ is
intended to prevent blocking pairs described by part 1 of Definition 1.

As each resident ri ∈ R is either assigned to a single hospital or is unassigned,
we introduce the following constraint for all i (1 ≤ i ≤ n1):

l(ri)+1∑
p=1

xi,p = 1. (1)

Since a hospital hj may be assigned at most cj residents, xi,p = 1 where
pref(ri, p) = hj for at most cj residents. We thus obtain the following constraint
for all j (1 ≤ j ≤ n2):

n1∑
i=1

l(ri)∑
p=1

{xi,p ∈ X : pref(ri, p) = hj} ≤ cj . (2)

For each couple (r2i−1, r2i), if resident r2i−1 is assigned to the hospital in
position p in their projected preference list then r2i must also be assigned to
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the hospital in position p in their projected preference list. We thus obtain the
following constraint for all 1 ≤ i ≤ c and 1 ≤ p ≤ l(r2i−1) + 1:

x2i−1,p = x2i,p. (3)

Stability 1 - In a stable matching M in I, if a single resident ri ∈ R
has a worse partner than some hospital hj ∈ H where pref(ri, p) = hj and
rank(hj , ri) = q then hj must be fully subscribed with better partners than ri.

Therefore, either
l(ri)+1∑
p′=p+1

xi,p′ = 0 or hj is fully subscribed with better partners

than ri and
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj , q
′)} = cj . Thus, for each i (2c +

1 ≤ i ≤ n1) and p (1 ≤ p ≤ l(ri)) we obtain the following constraint where
pref(ri, p) = hj and rank(hj , ri) = q:

cj

l(ri)+1∑
p′=p+1

xi,p′ ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj , q
′)}. (4)

Stability 2(a) - In a stable matching M in I, if a couple ci = (r2i−1, r2i)
prefers hospital pair (hj1 , hj2) (which is at position p1 on ci’s preference list) to
(M(r2i−1),M(r2i)) (which is at position p2) then it must not be the case that, if
hj2 = M(r2i) then hj1 is under-subscribed or prefers r2i−1 to one of its partners
in M . In the special case in which pref(r2i−1, p1) = pref(r2i, p1) = hj1 it must
not be the case that, if hj1 = hj2 = M(r2i) then hj1 is under-subscribed or
prefers r2i−1 to one of its partners in M other than r2i.

Thus, for the general case, we obtain the following constraint for all i (1 ≤
i ≤ c) and p1, p2 (1 ≤ p1 < p2 ≤ l(r2i−1)) such that pref(r2i, p1) = pref(r2i, p2)
and rank(hj1 , r2i−1) = q:

cj1x2i,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj1 , q
′)}. (5)

However, for the special case in which pref(r2i−1, p1) = pref(r2i, p1) = hj1
we obtain the following constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 <
p2 ≤ l(r2i−1)) such that pref(r2i, p1) = pref(r2i, p2) and rank(hj1 , r2i−1) = q:

(cj1−1)x2i,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj1 , r2i)∧(ri′,p′′) ∈ R(hj1 , q
′)}. (6)

Stability 2(b) - A similar constraint is required for the odd members of
each couple. Thus, for the general case, we obtain the following constraint for all
i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 < p2 ≤ l(r2i)) such that pref(r2i−1, p1) =
pref(r2i−1, p2) and rank(hj2 , r2i) = q:

cj2x2i−1,p2 ∈ X ≤
q−1∑
q′=1

{xi′,p′′ : (ri′,p′′) ∈ R(hj2 , q
′)}. (7)
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Again, for the special case in which pref(r2i−1, p1) = pref(r2i, p1) = hj2 we
obtain the following constraint for all i (1 ≤ i ≤ c) and p1, p2 where (1 ≤ p1 <
p2 ≤ l(r2i)) such that pref(r2i−1, p1) = pref(r2i−1, p2) and rank(hj2 , r2i) = q:

(cj1−1)x2i−1,p2 ≤
q−1∑
q′=1

{xi′,p′′ ∈ X : q′ 6= rank(hj2 , r2i−1)∧ (ri′,p′′) ∈ R(hj2 , q
′)}.

(8)
For all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new constraint such

that:

αj,q ≥ 1−

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj , q
′)}

cj
. (9)

Thus, if hj is full with assignees better than rank q then αj,q may take the
value 0 or 1. However, if hj is not full with assignees better than rank q then
αj,q = 1.

For all j (1 ≤ j ≤ n2) and q (1 ≤ q ≤ l(hj)) define a new constraint such
that:

βj,q ≥ 1−

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj , q
′)}

(cj − 1)
. (10)

Thus, if hj has cj − 1 or more assignees better than rank q then βj,q may
take the value 0 or 1. However, if hj has less than cj − 1 assignees better than
rank q then βj,q = 1.

Stability 3(a) - In a stable matching M in I, if a couple ci = (r2i−1, r2i) is
assigned to a worse pair than hospital pair (hj1 , hj2) (where hj1 6= hj2) it must
be the case that for some t ∈ {1, 2}, hjt is full and prefers its worst assignee to
r2i−2+t.

Thus we obtain the following constraint for all i (1 ≤ i ≤ c) and p (1 ≤ p ≤
l(r2i−1)) where hj1 = pref(r2i−1, p), hj2 = pref(r2i, p), hj1 6= hj2 , rank(hj1 ,
r2i−1) = q1 and rank(hj2 , r2i) = q2:

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj1,q1 + αj2,q2 ≤ 2. (11)

Stability 3(b) - In a stable matching M in I, if a couple ci = (r2i−1, r2i)
is assigned to a worse pair than (hj , hj) where M(r2i−1) 6= hj and M(r2i) 6= hj
then hj must not have two or more free posts available.

Stability 3(c) - In a stable matching M in I, if a couple ci = (r2i−1, r2i)
is assigned to a worse pair than (hj , hj) where M(r2i−1) 6= hj and M(r2i) 6= hj
then hj must not prefer at least one of r2i−1 or r2i to some assignee of hj in M
while having a single free post.

Both of the preceding stability definitions may be modeled by a single con-
straint. Thus, we obtain the following constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤
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l(r2i−1)) such that pref(r2i−1, p) = pref(r2i, p) and hj = pref(r2i−1, p) where
q = min{rank(hj , r2i), rank(hj , r2i−1)} :

cj

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ −

q−1∑
q′=1

{xi′,p′′ ∈ X : (ri′,p′′) ∈ R(hj , q
′)}

(cj − 1)

≤
l(hj)∑
q′=1

{xi′,p′′ ∈ X : (ri′ , p
′′) ∈ R(hj , q

′)}. (12)

Stability 3(d) - In a stable matching M in I, if a couple ci = (r2i−1, r2i) is
jointly assigned to a worse pair than (hj , hj) where M(r2i−1) 6= hj and M(r2i) 6=
hj then hj must not be fully subscribed and also have two assigned partners rx
and ry (where x 6= y) such that hj strictly prefers r2i−1 to rx and also prefers
r2i to ry.

For each (hj , hj) acceptable to (r2i−1, r2i), let rmin be the better of r2i−1 and
r2i according to hospital hj with rank(hj , rmin) = qmin. Analogously, let rmax be
the worse of r2i and r2i−1 according to hospital hj with rank(hj , rmax) = qmax.
Thus we obtain the following constraint for i (1 ≤ i ≤ c) and p (1 ≤ p ≤ l(r2i−1))
such that pref(r2i−1, p) = pref(r2i, p) = hj .

l(r2i−1)+1∑
p′=p+1

x2i−1,p′ + αj,qmax
+ βj,qmin

≤ 2. (13)

Objective Function - A maximum cardinalilty matching M in I is a stable
matching in which the largest number of residents is assigned amongst all of the
stable matchings admitted by I. To maximise the size of the stable matching
found we apply the following objective function:

max

n1∑
i=1

l(ri)∑
p=1

xi,p. (14)

Given an instance I of hrc, the above IP model J constructed from I sat-
isfies the property that I admits a stable matching if and only if J admits a
feasible solution, the full details of the proof are shown in [8]. The model has
O(m) binary-valued variables and O(m+ cL2) constraints where m is the total
length of the single residents’ preference lists and the coupled residents’ pro-
jected preference lists, c is number of couples and L is the maximum length of
a couple’s preference list. The space complexity of the model is O(m(m+ cL2))
and the model can be built in O(m(m + cL2)) time in the worst case for an
arbitrary instance.

4 Empirical Results

We ran experiments on a Java implementation of the IP models as described in
Section 3 applied to randomly-generated data. We present data showing (i) the
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Fig. 1. Empirical Results in Experiment 1.

average time taken to find a maximum cardinality stable matching or report that
no stable matching exists, and (ii) the average size of a maximum cardinality
stable matching where a stable matching did exist. Instances were generated
with a skewed preference list distribution on both sides, taking into account
that in practice some residents and hospitals are more popular than others (on
both sides, the most popular agent was approximately 3 times as popular as the
least popular agent).

All experiments were carried out on a desktop PC with an Intel i5-2400
3.1Ghz processor, with 8Gb of memory running Windows 7. The IP solver used
in all cases was CPLEX 12.4 and the model was implemented in Java using
CPLEX Concert. We have also extended the model to cope with preference lists
containing ties, and we are able to find a maximum cardinality stable matching
in real data derived from the SFAS application (see [8] for further details).

Experiment 1. In our first experiment, we report on data obtained as we
increased the number of hospitals in the instance while maintaining the same
total number of residents, couples and posts. For various values of x (25 ≤ x ≤
500) in increments of 25, 1000 randomly generated instances of size 1000 were
created consisting of 1000 residents in total, x hospitals, 100 couples (and hence
800 single residents) and 1000 available posts which were unevenly distributed
amongst the hospitals. The time taken to find a maximum cardinality stable
matching or report that no stable matching existed in each instance is plotted
in Figure 1 for all tested values of x. Figure 1 also shows charts displaying the
percentage of instances encountered which admitted a stable matching and the
mean size of a maximum cardinality stable solution for all tested values of x.

Figure 1 shows that the mean time taken to find a maximum cardinality
stable matching tended to decrease as we increased the number of hospitals
in the instances. We believe that this is due to the hospitals’ preference lists
becoming shorter, thereby reducing the model’s complexity. The data in Figure
1 also shows that the percentage of hrc instances admitting a stable matching
appeared to increase with the number of hospitals involved in the instance. We



The Hospitals / Residents Problem with Couples XI

4 6 8 10 12

0
10

20
30

40

Mean Time to 
Solve to Optimality

Pref List Length

Tim
e(

s)

4 6 8 10 12

89
.5

90
.5

91
.5

92
.5

Percentage of Instances 
Admitting a Stable Matching

Pref List Length

%
 S

olv
ab

le

4 6 8 10 12

93
0

95
0

97
0

99
0

Mean Size 
of Maximum Cardinality

 Stable Matching

Pref List Length

Si
ze

Fig. 2. Empirical Results in Experiment 2.

conjecture that this is because, as each hospital has a smaller number of posts,
it is more likely to become full, and therefore less likely to be involved in a
blocking pair due to being under-subscribed. Finally, the data shows that as the
number of hospitals in the instances increased, the mean size of a maximum
cardinality stable matching supported by the instances tended to decrease. This
can be explained by the fact that, as the number of hospitals increases but the
residents’ preference list lengths and the total number of posts remain constant,
the number of posts per hospital decreases. Hence the total number of posts
among all hospitals on a resident’s preference list decreases.

Experiment 2. In our second experiment, we report on data obtained as
we increased the length of the individual preference lists for the residents in the
instance while maintaining the same total number of residents, couples, hospitals
and posts. For various values of x (3 ≤ x ≤ 12) in increments of 1, 1000 randomly
generated instances of size 1000 were created consisting of 1000 residents in total,
100 hospitals, 100 couples (and hence 800 single residents) and 1000 available
posts which were unevenly distributed amongst the hospitals.

The time taken to find a maximum cardinality stable matching or report that
no stable matching existed in each instance is plotted in Figure 2 for all tested
values of x. Figure 2 also shows charts displaying the percentage of instances
encountered admitting a stable matching and the mean size of a maximum car-
dinality stable solution for all tested values of x. Figure 2 shows that the mean
time taken to find a maximum cardinality stable matching increased as we in-
creased the length of the individual residents’ preference lists in the instances.
The data in Figure 2 also shows that the percentage of hrc instances admitting
a stable matching did not appear to be correlated with the length of the indi-
vidual residents’ preference lists in the instances and further that as the length
of the individual residents’ preference lists in the instances increased, the mean
size of a maximum cardinality stable matching supported by the instances also
tended to increase. The first and third of these phenomena would seem to be
explained by the fact that the underlying graph is simply becoming more dense.
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5. Biró, P.: Student admissions in Hungary as Gale and Shapley envisaged. Tech.
Rep. TR-2008-291, University of Glasgow, Dept. of Computing Science (2008)
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