Abstract
The integral simplex using decomposition (ISUD) algorithm [22] is a dynamic constraint reduction method that aims to solve the popular set partitioning problem (SPP). It is a special case of primal algorithms, i.e. algorithms that furnish an improving sequence of feasible solutions based on the resolution, at each iteration, of an augmentation problem that either determines an improving direction, or asserts that the current solution is optimal. To show how ISUD is related to primal algorithms, we introduce a new augmentation problem, MRA. We show that MRA canonically induces a decomposition of the augmentation problem and deepens the understanding of ISUD. We characterize cuts that adapt to this decomposition and relate them to primal cuts. These cuts yield a major improvement over ISUD, making the mean optimality gap drop from 33.92% to 0.21% on some aircrew scheduling problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balas, E., Padberg, M.: On the set-covering problem: 2 - an algorithm for set partitioning. Oper. Res. 23(1), 74–90 (1975)
Ben-Israel, A., Charnes, A.: On some problems of diophantine programming. Cahiers du Centre d’Ét. de Rech. Opér. 4, 215–280 (1962)
Eisenbrand, F., Rinaldi, G., Ventura, P.: Primal separation for 0/1 polytopes. Math. Program. 95(3), 475–491 (2003)
Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F.: An improved primal simplex algorithm for degenerate linear programs. INFORMS J. Comput. 23(4), 569–577 (2011)
Elhallaoui, I., Villeneuve, D., Soumis, F., Desaulniers, G.: Dynamic aggregation of set-partitioning constraints in column generation. Oper. Res. 53(4), 632–645 (2005)
Glover, F.: A new foundation for a simplified primal integer programming algorithm. Oper. Res. 16, 727–740 (1968)
Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM 36(4), 873–886 (1989)
Gomory, R.E.: Outline of an algorithm for integer solutions to linear program. Bull. Amer. Math. Soc. 64(5), 275–278 (1958)
Gomory, R.E.: All-integer integer programming algorithm. Ind. Sched., 193–206 (1963)
Letchford, A.N., Lodi, A.: Primal cutting plane algorithms revisited. Math. Methods Oper. Res. 56(1), 67–81 (2002)
Letchford, A.N., Lodi, A.: Primal separation algorithms. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(3), 209–224 (2003)
Rönnberg, E., Larsson, T.: Column generation in the integral simplex method. European J. Oper. Res. 192(1), 333–342 (2009)
Salkin, H.M., Koncal, R.D.: Set covering by an all-integer algorithm: Computational experience. J. ACM 20(2), 189–193 (1973)
Saxena, A.: Set-partitioning via integral simplex method. OR Group, Carnegie-Mellon University, Pittsburgh (2003) (unpublished manuscript)
Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: Optimization and augmentation are equivalent. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 473–483. Springer, Heidelberg (1995)
Spille, B., Weismantel, R.: Primal integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 245–276. Elsevier, Amsterdam (2005)
Stallmann, M.F., Brglez, F.: High-contrast algorithm behavior: Observation, conjecture, and experimental design. In: ACM-FCRC. ACM, New York (2007), 549075
Thompson, G.L.: An integral simplex algorithm for solving combinatorial optimization problems. Comput. Optim. Appl. 22(3), 351–367 (2002)
Trubin, V.: On a method of solution of integer linear programming problems of a special kind. Soviet Math. Dokl. 10, 1544–1546 (1969)
Young, R.D.: A primal (all-integer) integer programming algorithm. J. Res. Nat. Bureau of Standards: B. Math. and Math. Phys., 213–250 (1965)
Young, R.D.: A simplified primal (all-integer) integer programming algorithm. Oper. Res. 16(4), 750–782 (1968)
Zaghrouti, A., Soumis, F., Elhallaoui, I.: Integral simplex using decomposition for the set partitioning problem. Oper. Res. (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rosat, S., Elhallaoui, I., Soumis, F., Lodi, A. (2014). Integral Simplex Using Decomposition with Primal Cuts. In: Gudmundsson, J., Katajainen, J. (eds) Experimental Algorithms. SEA 2014. Lecture Notes in Computer Science, vol 8504. Springer, Cham. https://doi.org/10.1007/978-3-319-07959-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-07959-2_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07958-5
Online ISBN: 978-3-319-07959-2
eBook Packages: Computer ScienceComputer Science (R0)