arXiv:1402.6239v1 [cs.Sl] 25 Feb 2014

Improved Upper and Lower Bound Heuristics for Degree
Anonymization in Social Networks

Sepp Hartung Clemens Hoffmann
André Nichterlein

Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin,
Germany
{sepp.hartung, andre.nichterlein,
clemens.hoffmann}@tu-berlin.de

Abstract

Motivated by a strongly growing interest in anonymizing social network data, we investi-
gate the NP-hard DEGREE ANONYMIZATION problem: given an undirected graph, the task is
to add a minimum number of edges such that the graph becomes k-anonymous. That is, for
each vertex there have to be at least k—1 other vertices of exactly the same degree. The model
of degree anonymization has been introduced by Liu and Terzi [ACM SIGMOD’08], who also
proposed and evaluated a two-phase heuristic. We present an enhancement of this heuristic,
including new algorithms for each phase which significantly improve on the previously known
theoretical and practical running times. Moreover, our algorithms are optimized for large-
scale social networks and provide upper and lower bounds for the optimal solution. Notably,
on about 26 % of the real-world data we provide (provably) optimal solutions; whereas in the
other cases our upper bounds significantly improve on known heuristic solutions.

1 Introduction

In recent years, the analysis of (large-scale) social networks received a steadily growing attention
and turned into a very active research field [7]. Its importance is mainly due the easy availability
of social networks and due to the potential gains of an analysis revealing important subnetworks,
statistical information, etc. However, as the analysis of networks may reveal sensitive data about
the involved users, before publishing the networks it is necessary to preprocess them in order to
respect privacy issues [9]. In a landmark paper [12] initiating a lot of follow-up work [4, 11, 13],!
Liu and Terzi transferred the so-called k-anonymity concept known for tabular data in databases [9,
14, 15, 16] to social networks modeled as undirected graphs. A graph is called k-anonymous if for
each vertex there are at least k — 1 other vertices of the same degree. Therein, the larger k is, the
better the expected level of anonymity is.

In this work we describe and evaluate a combination of heuristic algorithms which provide
(for many tested instances matching) lower and upper bounds, for the following NP-hard graph
anonymization problem:

DEGREE ANONYMIZATION [12]

Input: An undirected graph G = (V, E) and an integer k € IN.

Task: Find a minimum-size edge set E’ over V such that adding E’ to G results in a k-anonymous
graph.

As DEGREE ANONYMIZATION is NP-hard even for constant k£ > 2 [11], all known (experimentally
evaluated) algorithms, are heuristics in nature [3, 12, 13, 17]. Liu and Terzi [12] proposed a

L According to Google Scholar (accessed Feb. 2014) it has been cited more than 300 times.

http://arxiv.org/abs/1402.6239v1

= 1223 haet 3,3,3,3 Phage 2
input graph G degree “k-anonymized” realization
with k =4 sequence D degree sequence D’ of D' in G

Figure 1: A simple example for the two phases in the heuristic of Liu and Terzi [12]. Phase 1: Anonymize
the degree sequence D of the input graph G by increasing the numbers in it such that each resulting
number occurs at least k times. Phase 2: Realize the k-anonymized degree sequence D’ as a super-graph
of G.

heuristic which, in a nutshell, consists of the following two phases: i) Ignore the graph structure
and solve a corresponding number problem and ii) try to transfer the solution from the number
problem back to the graph instance. More formally (see Figure 1 for an example), given an
instance (G, k), first compute the degree sequence D of G, that is, the multiset of positive integers
corresponding to the vertex degrees in G. Then, Phase 1 consists of k-anonymizing the degree
sequence D (each number occurs at least k times) by a minimum amount of increments to the
numbers in D resulting in D’. In Phase 2, try to realize the k-anonymous sequence D’ as a super-
graph of G, meaning that each vertex gets a demand, which is the difference of its degree in D’
compared to D, and then a “realization” algorithm adds edges to G such that for each vertex the
amount of incident new edges equals its demand.

Note that, since the minimum “k-anonymization cost” of the degree sequence D (sum over all
demands) is always a lower bound on the k-anonymization cost of G, the above described algorithm,
if successful when trying to realize D’ in G, optimally solves the given DEGREE ANONYMIZATION instance.

Related Work. We only discuss work on DEGREE ANONYMIZATION directly related to what
we present here. Our algorithm framework is based on the two-phase algorithm due to Liu and
Terzi [12] where also the model of graph (degree-)anonymization has been introduced. Other
models of graph anonymization have been studied as well, see Zhou and Pei [19] (studying the
neighborhood of vertices) and Chester et al. [4] (anonymizing vertex subsets). We refer to Zhou
et al. [20] for a survey on anonymization techniques for social networks. DEGREE ANONYMIZATION
is NP-hard for constant & > 2 and it is W[1]-hard (presumably not fixed-parameter tractable) with
respect to the parameter size of a solution size [11]. On the positive side, there is polynomial-size
kernel (efficient and effective preprocessing) with respect to the maximum degree of the input
graph [11]. Lu et al. [13] and Casas-Roma et al. [3] designed and evaluated heuristic algorithms
that are our reference points for comparing our results.

Our Contributions. Based on the two-phase approach of Liu and Terzi [12] we significantly
improve the lower bound provided in Phase 1 and provide a simple heuristic for new upper bounds
in Phase 2. Our algorithms are designed to deal with large-scale real world social networks
(up to half a million vertices) and exploit some common features of social networks such as the
power-law degree distribution [1]. For Phase 1, we provide a new dynamic programming algorithm
of k-anonymizing a degree sequence D “improving” the previous running time O(nk) to O(Ak?s).
Note that maximum degree A is in our considered instances about 500 times smaller than the
number of vertices n. We also implemented a data reduction rule which leads to significant
speedups of the dynamic program. We study two different cases to obtain upper bounds. If one
of the degree sequences computed in Phase 1 is realizable, then this gives an optimal upper bound
and otherwise we heuristically look for “near” realizable degree sequences. For Phase 2 we evaluate
the already known “local exchange” heuristic [12] and provide some theoretical justification of its
quality.

We implemented our algorithms and compare our upper bounds with a heuristic of Lu et al. [13],
called clustering-heuristic in the following. Our empirical evaluation demonstrates that in about
26% of the real-world instances the lower bound matches the upper bound and in the remaining
instances our heuristic upper bound is on average 40% smaller than the one provided by the
clustering-heuristic. However, this comes at a cost of increased running time: the clustering-
heuristic could solve all instances within 15 seconds whereas there are a few instances where our

algorithms could not compute an upper bound within one hour.
Due to the space constraints, all proofs and some details are deferred to an appendix.

2 Preliminaries

We use standard graph-theoretic notation. All graphs studied in this paper are undirected and
simple without self-loops and multi-edges. For a given graph G = (V, E) with vertex set V
and edge set E we set n := |V| and m := |E|. Furthermore, by deg~(v) we denote the degree
of a vertex v € V in G and Ag denotes the maximum degree in G. For 0 < d < Ag let
BS := {v € V| deg(v) = d} be the block of degree d, that is, the set of all vertices with degree d
in G. Thus, being k-anonymous is equivalent to each block being of size either zero or at least k.
For a set S of edges with endpoints in a graph G, we denote by G + S the graph that results
from inserting all edges from S into G. We call S an edge insertion set for G, and if G + S is
k-anonymous, then it is an k-insertion set.

A degree sequence D is a multiset of positive integers and Ap denotes its maximum value. The
degree sequence of a graph G with vertex set V = {v1,...,v,} is Dg := {degg(v1),...,degq(vn)}-
For a degree sequence D, we denote by by how often value d occurs in D and we set B =
{bo,...,bap} to be the block sequence of D, that is, B is just the list of the block sizes of G.
Clearly, the block sequence of a graph G is the block sequence of G’s degree sequence. The block
sequence can be viewed as a compact representation of a degree sequence (just storing the amount
of vertices for each degree) and we use these two representations of vertex degrees interchangeably.
Equivalently to graphs, a block sequence is k-anonymous if each value is either zero or at least k
and a degree sequence is k-anonymous if its corresponding block sequence is k-anonymous.

Let D = {di,...,d,} and D' = {d},...,d],} be two degree sequences with corresponding block
sequences B and B'. We define ||B|| = |D| = Y., d;. We write D’ > D and B’ & B if for both
degree sequences—sorted in ascending order—it holds that d; > d; for all 4. Intuitively, this
captures the interpretation “D’ can be obtained from D by increasing some values”. If D’ > D,
then (for sorted degree sequences) we define the degree sequence D' — D = {d} — dy,...,d,, —d,}
and set B’ © B to be its block sequence. We omit sub- and superscripts if the graph is clear from
the context.

3 Description of the Algorithm Framework

In this section we present the details of our algorithm framework to solve DEGREE ANONYMIZA-
TION. We first provide a general description how the problem is split into several subproblems
(basically corresponding to the two-phase approach of Liu and Terzi [12]) and then describe the
corresponding algorithms in detail.

3.1 General Framework Description

We first provide a more formal description of the two-phase approach due to Liu and Terzi [12] and
then describe how we refine it: Let (G = (V, E), k) be an input instance of DEGREE ANONYMIZA-
TION.

Phase 1: For the degree sequence D of G, compute a k-anonymous degree sequence D’ such that
D' > D and |D — D’| is minimized.

Phase 2: Try to realize D’ in G, that is, try to find an edge insertion set .S such that the degree
sequence of G + S is D'.

The minimum k-anonymization cost of D, formally |D’ — D|/2, is a lower bound on the number of
edges in a k-insertion set for G. Hence, if succeeding in Phase 2 to realize D’, then a minimum-size
k-insertion set S for G has been found.

K <K

B=1{0,3,1,4,0,1,1} B ={0,3,0,5,0,0,2}

Figure 2: A graph (left side) with block sequence B that can be 2-anonymized by adding one edge (right
side) resulting in B’. Another 2-anonymous block sequence (also of cost two) that will be found by the
dynamic programming is B” = {0, 2,2, 4,0,0,2}. The realization of B” in G would require to add an edge
between a degree-five vertex (there is only one) and a degree-one vertex, which is impossible.

Liu and Terzi [12] gave a dynamic programming algorithm which exactly solves Phase 1 and
they provided the so-called local exchange heuristic algorithm for Phase 2. If Phase 2 fails, then
the heuristic of Liu and Terzi [12] relaxes the constraints and tries to find a k-insertion set yielding
a graph “close” to D'.

We started with a straightforward implementation of the dynamic programming algorithm
and the local exchange heuristic. We encountered the problem that, even when iterating through
all minimum k-anonymous degree sequences D', one often fails to realize D’ in Phase 2. More
importantly, we observed the difficulty that iterating through all minimum sequences is often to
time consuming because the same sequence is recomputed multiple times. This is because the
dynamic program iterates through all possibilities to choose “sections” of consecutive degrees in
the (sorted) degree sequence D that end up in the same block in D’. These sections have to be of
length at least k (the final block has to be full) but at most 2k — 1 (longer sections can be split into
two). However, if there is a huge block B (of size > 2k) in D, then the algorithm goes through
all possibilities to split B into sections, although it is not hard to show that at most &k — 1 degrees
from each block are increased. Thus, different ways to cut these degrees into sections result in the
same degree sequence.

We thus redesigned the dynamic program for Phase 1. The main idea is to consider the block
sequence of the input graph and exploiting the observation that at most £ — 1 degrees from a
block are increased in a minimum-size solution. Therefore, we avoid to partition one block into
multiple sections and the running time dependence on the number of vertices n can be replaced
by the maximum degree A, yielding a significant performance increase.

We also improved the lower bound provided by D’ — D on the k-anonymization cost of G. To
this end, the basic observation was that while trying to realize one of the minimum k-anonymous
sequences D’ in Phase 2 (failing in almost all cases), we encountered that by a simple criterion
on the sequence D’ — D one can even prove that D’ is not realizable in G. That is, a k-insertion
set S for G corresponding to D’ would induce a graph with degree sequence D' — D. Hence,
the requirement that there is a graph with degree sequence D’ — D is a necessary condition to
realize D’ in G in Phase 2. Thus, for increasing cost ¢, by iterating through all k-anonymous
sequences D’ with |D' — D| = ¢ and excluding the possibility that D’ is realizable in G by the
criterion on D’ — D, one can step-wisely improve the lower bound on the k-anonymization cost
of G. We apply this strategy and thus our dynamic programming table allows to iterate through
all k-anonymous sequences D’ with |D’ — D| = ¢. Unfortunately, even this criterion might not be
sufficient because the already present edges in G might prevent the insertion of a k-insertion set
which corresponds to D' — D (see Figure 2 for an example). We thus designed a test which not
only checks whether D’ — D is realizable but also takes already present edges in G into account
while preserving that |D’ — DJ is a lower bound on the k-anonymization cost of G. With this
further requirement on the resulting sequences D’ of Phase 1, in our experiments we observe that
Phase 2 of realizing D’ in G is in 26 % of the real-world instances successful. Hence, 26 % of the
instances can be solved optimally. See Subsection 3.2 for a detailed description of our algorithm
for Phase 1.

For Phase 2 the task is to decide whether a given k-anonymization D’ can be realized in G. As
we will show that this problem is NP-hard, we split the problem into two parts and try to solve
each part separately by a heuristic. First, we find a degree-vertex mapping, that is, we assign each

degree d; € D’ to a vertex v in G such that d; > deg(v). Then, the demand of vertex v is set
to d; — deg(v). Second, given a degree-vertex mapping with the corresponding demands we try
the find an edge insertion set such that the number of incident new edges for each vertex is equal
to its demand. While the second part could in principle be done optimally in polynomial-time
by solving an f-factor problem [11], we show that already a heuristic refinement of the “local
exchange” heuristic due to Liu and Terzi [12] is able to succeed in most cases. Thus, theoretically
and also in our experiments, the “hard part” is to find a good degree-vertex mapping. Roughly
speaking, the difficulties are that, according to D’, there is more than one possibility of how many
vertices from degree i are increased to degree j > ¢. Even having settled this it is not clear which
vertices to choose from block i. See Subsection 3.3 for a detailed description of our algorithm for
Phase 2.

3.2 Phase 1: Exact k-Anonymization of Degree Sequences

We start with providing a formal problem description of k-anonymizing a degree sequence D and
describe our dynamic programming algorithm to find such sequences D’. We then describe the
criteria that we implemented to improve the lower bound |D' — D].

Basic Number Problem. The decision version of the degree sequence anonymization problem
reads as follows.

k-DEGREE SEQUENCE ANONYMITY (k-DSA)
Input: A block sequence B and integers k, s € IN.
Question: Is there a k-anonymous block sequence B’ & B such that ||B' © B| = s?

The requirements on B’ in the above definition ensure that B’ can be obtained by performing
exactly s many increases to the degrees in B. Liu and Terzi [12] give a dynamic programming
algorithm that solves k-DSA optimally in O(nk) time and space. Here, besides using block instead
of degree sequences, we added another dimension to the dynamic programming table storing the
cost of a solution.

Lemma 1. k-DEGREE SEQUENCE ANONYMITY can be solved in O(A-k?-s) time and O(A -k - s)
space.

Proof. Let (B, k, s) be an instance of k~-DEGREE SEQUENCE ANONYMITY. We describe a dynamic
programming algorithm. The algorithm maintains a table T where the entry T[i, ¢,] with 0 < i <
A, 0<c¢<s,and 0 <t < 2k is true if and only if the block sequence B(i) = { By, ..., B;} minus
the last ¢ degrees can be k-anonymized with cost exactly ¢. Formally, B(7) minus the last ¢ degrees
is the block sequence B'(i) corresponding to the degree sequence D that is obtained from Dg(;) by
removing the ¢ highest degrees. For we 0 < ¢ < A we denote by cost(i,t) the cost to increase the
last ¢t degrees in B(i) to i + 1. We compute T'[¢, t, ¢] with the following recursion.

c=0A(|Bol —t=0V|By| -t >k), i=0
. I eN: k—(|Bi| —t) <t <2k A
Tli t,c] = . ,) , |Bi| >t
T —1,t',¢ — cost(i — 1,t)] = true,
T[Zf 17t7 |Bi|7c]7 |Bz| <t.

The entry T[A, 0, s] is true if and only if (B, k, s) is a yes-instance. We compute the cost-function
in a preprocessing step in O(A - k?) time and O(A - k) space. Having computed the cost-function
each table entry in T' can be computed in O(k) time. As there are A-k- s table entries, the overall
running time is O(A - k? - s).

As to the correctness, observe that if 4 = 0 in the recursion, then ¢ has to be positive and
exactly t degrees of block By have to be increased by at least one, which is possible only if
|Bo] —t =0or |Bo| —t > k. If i > 0 and |B;| < t, then clearly all degrees in the block B; have
to be increased. If ¢ > 0 and |B;| > ¢, then there remain some degrees in the block B;. Thus, the
block has to be of size at least k implying that at least min(0,k — (|B;| — t)) degrees have to be

added to B;. Furthermore, adding more than 2k vertices is not necessary, as in this case we would
add only k vertices to ensure that both the blocks B; and B;_; are large enough, that is, |B}| > k
and |B!_;| > k. The correctness now follows from the fact that the recursion tries all possibilities
for the value ' between min(0,k — (|B;| — t)) and 2k. O O

There might be multiple minimum solutions for a given k-DSA instance while only one of them
is realizable, see Figure 2 for an example. Hence, instead of just computing one minimum-size
solution, we iterate through these minimum-size solutions until one solution is realizable or all
solutions are tested. Observe that there might be exponentially many minimum-size solutions: In
the block sequence B = {0,3,1,3,1,...,3,1,3}, for k = 2, each subsequence 3,1, 3 can be either
changed to 2,2,3 or to 3,0,4. We use a data reduction rule (see end of this subsection) to reduce
the amount of considered solutions in such instances.

Criteria on the Realizability of k-DSA Solutions. A difficulty in the solutions provided by
Phase 1, encountered in our preliminary experiments and as already observed by Lu et al. [13]
on a real-world network, is the following: If a solution increases the degree of one vertex v by
some amount, say 100, and the overall number of vertices with increased degree is at most 100,
then there are not enough neighbors for v to realize the solution. We overcome this difficulty as
follows: For a k-DSA-instance (B, k) and a corresponding solution B’ let S be a k-insertion set
for G such that the block sequence of G + S is B’. By definition, the block sequence of the graph
induced by the edges S is B’ © B. Hence, it is a necessary condition (for success in Phase 2) that
B’ © B is a realizable block sequence, that is, there is a graph with block sequence B’ © B. Tripathi
and Vijay [18] have shown that it is enough to check to following Erdds-Gallai characterization of
realizable degree sequence just once for each block.

Lemma 2 ([8]). Let D = {d1,...,d,} be a degree sequence sorted in descending order. Then D
is realizable if and only if 3" | d; is even and for each 1 <r <n —1 it holds that

n

Zdi <r(r—1)+ Y min(r,dy). (1)

1=r+1

We call the characterization provided by Lemma 2 the Erdds-Gallai test. Unfortunately, there
are k-anonymous sequences D', passing the Erdds-Gallai test, but still or not realizable in the
input graph G (see Figure 2 for an example).

We thus designed an advanced version of the Erdos-Gallai test that takes the structure of the
input graph into account. To explain the basic idea behind, we first discuss how Inequality (1)
in Lemma 2 can be interpreted: Let V" be the set of vertices corresponding to the first r degrees.
The left-hand side sums over the degrees of all vertices in V". This amount has to be at most as
large as the number of edges (counting each twice) that can be “obtained” by making V" a clique
(r(r — 1)) and the maximum number of edges to the vertices in V' \ V" (a degree-d; vertex has at
most min{d;, 7} neighbors in V"). The reason why the Erdds-Gallai test might not be sufficient
to determine whether a sequence can be realized in G is that it ignores the fact that same vertices
in V" might be already adjacent in G and it also ignores the edges between vertices in V" and
V \ V". Hence, the basic idea of our advanced Erdds-Gallai test is, whenever some of the vertices
corresponding to the degrees can be uniquely determined, to subtract the corresponding number
of edges as they cannot contribute to the right-hand side of Inequality (1).

While the difference between using just the Erdds-Gallai test and the advanced Erdés-Gallai
test resulted in rather small differences for the lower bound (at most 10 edges), this small difference
was important for some of our instances to succeed in Phase 2 and to optimally solve the instance.
We think that further improving the advanced Erd&s-Gallai test is the best way to improve the
rate of success in Phase 2.

Complete Strategy for Phase 1. With the above described restriction for realizable k-anony-
mous degree sequences, we finally arrive at the following problem for Phase 1, stated in the
optimization form we solve:

REALIZABLE k-DEGREE SEQUENCE ANONYMITY (k-RDSA)

Input: A degree sequence B and an integer k € IN.

Task: Compute all k-anonymous degree sequences B’ such that B’ ¢ B, ||B’ © B|| is minimum,
and B’ © B is realizable.

Our strategy to solve k-RDSA is to iterate (for increasing solution size) through the solutions of
k-DSA and run for each of them the advanced Erdés-Gallai test. Thus, we step-wisely increase
the respective lower bound B’ — B until we arrive at some B’ passing the test. Then, for each
solution of this size we test in Phase 2 whether it is realizable (if so, then we found an optimal
solution). If the realization in Phase 2 fails, then, for each such block sequence B’, we compute
how many degrees have to be “wasted” in order to get a realizable sequence. Wasting means
to greedily increase some degrees in B’ (while preserving k-anonymity) until the resulting degree
sequence is realizable in the input graph. The cost B’ — B plus the amount of degrees needed to
waste in order to realize B’ is stored as an upper-bound. A minimum upper-bound computed in
this way is the result of our heuristic.

Due to the power law degree distribution in social networks, the degree of most of the vertices
is close to the average degree, thus one typically finds in such instances two large blocks B;
and B;;; containing many thousands of vertices. Hence, “wasting” edges is easy to achieve
by increasing degrees from B; by one to B;;1 (this is optimal with respect to the Erdés-Gallai
characterization). For the case that two such blocks cannot be found, as a fallback we also
implemented a straightforward dynamic programming to find all possibilities to waste edges to
obtain a realizable sequence.

Remark. We do not know whether the decision version of k-RDSA (find only one such solu-
tion B’) is polynomial-time solvable and resolving this question remains as challenge for future
research.

Data Reduction Rule. In our preliminary experiments we observed that for some instances
we could not finish Phase 1 even for k¥ = 2 within a time limit of one hour. Our investigations
revealed that this is mainly due to the frequent occurrence of the following “pattern” within three
consecutive blocks: The first block ¢ and the third block i 4+ 2 are each of size at least 2k — 1
and the middle block consists of £ — 1 degrees. For example, for £ = 2 consider the consecutive
blocks 4, 1,4. The details of the dynamic program (see Section 3.2) show that in any solution for
the entire block sequence block 4 and ¢ + 2 stay full and either block 7 + 1 is filled by the degrees
from block i or they are increased to block i + 2. In our example this means that the solution is
either 4,0,4 or 3,2,4 (block i + 2 could contain less degrees but at least k). Then, if this pattern
occurs multiple, say z, times, then there 2% different solutions in Phase 1. However, as can be
observed in our example, with respect to the Erd6s-Gallai test whether the resulting sequence is
realizable both solutions, 4,0,4 and 3,2,4, are equivalent because they increase just one degree
by one. The general idea of our data reduction rule is to find these patterns where the first and
last block are “large” enough to guarantee that the degrees of preceding blocks are not increased
to the middle of the pattern and it is not necessary to increase something from the middle of
the pattern to succeeding blocks. Hence, the middle of the pattern can be solved “independently”
from preceding and succeeding blocks and if there is a minimum solution which is “Erd&s-Gallai-
optimal” (increasing degrees by at most one), then it is safe to take one of them for the middle of
the pattern. Formally, our data reduction rule, generalizing the above ideas, is as follows.

Rule 1. Let (B, k) be an instance of k-RDSA. If there is a block B; in B with b; > k, a sequence of
blocks B, B;+1,...,Bji such that Zfi]t b >+ 1D)k+k—1andb >k foralll € {j,...,j+1},
and if there is minimum-size k-anonymaization Bé,j of the block sequence B; j = By, Bit1,...,DB;
such that i) all blocks | for 1 > 2 in BQJ © B;,; are empty and i) block zero in BZ’-J is of size at
least k, then substitute in B the subsequence B; ; by B; ;.

In our implementation of Rule 1 we use our dynamic programming algorithm (with disabled
Erdds-Gallai test) to check whether there is a k-anonymization Bgﬁ ; for B; ; tulfilling the required
properties.

3.3 Phase 2: Realizing a k-Anonymous Degree Sequence

Let (G, k) be an instance of DEGREE ANONYMIZATION and let B be the block sequence of G. In
Phase 1 a k-anonymization B’ of B is computed such that B’ © B. In Phase 2, given G and B’,
the task is to decide whether there is a set S of edge insertions for G such that the block sequence
of G+ S is equal to B’. We call this the DEGREE REALIZATION problem and first prove that it is
NP-hard.

Theorem 1. DEGREE REALIZATION is NP-hard even on cubic planar graphs.

Proof. We prove the NP-hardness by a reduction from the INDEPENDENT SET problem: Given a
graph G = (V, F) and an integer ¢, decide whether there is a set of at least ¢ pairwise non-adjacent
vertices in G. INDEPENDENT SET remains NP-hard in cubic planar graphs [10, GT20].

The reduction, which is similar to those proving that DEGREE ANONYMIZATION remains NP-
hard on 3-colorable graphs [11, Theorem 1], is as follows: Let G be a cubic planar and ¢ an integer
that together form an instance of INDEPENDENT SET. The block sequence of the n-vertex graph G
is B={0,0,0,n}. We set

B ={0,0,0,n—¢,0,...,0,(}
——
=2
and next prove that the DEGREE REALIZATION-instance (G, B’) is a yes-instance if and only if
(G,?) is a yes-instance for INDEPENDENT SET.

If there is an independent set S (pairwisely non-adjacent vertices) of size £ in G, then adding
all edges between the vertices in S (making them a clique), results in a graph whose block sequence
in B’. Reversely, in a realization of B’ in G, there are exactly £ vertices whose degree has been
increased by ¢ — 1. Hence, these vertices form a clique, implying that they are independent in G.

We remark that from the details of the proof of Theorem 1 [11], it follows that DEGREE
REALIZATION is NP-hard even in case that B’ is a k-anonymized sequence such that |B' — B|| is
minimum. o o

We next present our heuristics for solving DEGREE REALIZATION. First, we find a degree-
vertex mapping, that is, for D' = di,...,d,, being the degree sequence corresponding to B’, we
assign each value d; to a vertex v in G such that d; > degy(v) and set d(v), the demand of v,
to d} — degq(v). Second, we try to find, mainly by the local exchange heuristic, an edge insertion
set S such that in G + S the amount of incident new edges for each vertex v is equal to its
demand d(v). The details in the proof of Theorem 1 indeed show that already finding a realizable
degree-vertex mapping is NP-hard. This coincides with our experiments, as there the “hard part”
is to find a good degree-vertex mapping and the local exchange heuristic is quite successful in
realizing it (if possible). Indeed, we prove that “large” solutions can be always realized by it:

Theorem 2. A demand function d is always realizable by the local exchange heuristic in a maxi-

mum degree-A graph G = (V,E) if 3,y d(v) > 20A* + 4A2.

In Appendix A (appendix) we give a detailed description of our algorithms for Phase 2 and
formally prove the above theorem.

4 Experimental Results

Implementation Setup. All our experiments are performed on an Intel Xeon E5-1620 3.6GHz
machine with 64GB memory under the Debian GNU/Linux 6.0 operating system. The program is
implemented in Java and runs under the OpenJDK runtime environment in version 1.7.0_25. The
time limit for one instance is set to one hour per k-value and we tested for k = 2, 3, 4, 5, 7, 10,
15, 20, 30, 50, 100, 150, 200. After reaching the time limit, the program is aborted and the upper
and lower bounds computed so far by the dynamic program for Phase 1 are returned. The source
code is freely available.?

*http://fpt.akt.tu-berlin.de/kAnon/

http://fpt.akt.tu-berlin.de/kAnon/

Table 1: Experimental results on real-world instances. We use the following abbreviations: CH for
clustering-heuristic of Lu et al. [13], OH for our upper bound heuristic, OPT for optimal value for the
DEGREE ANONYMIZATION problem, and DP for dynamic program for the k-RDSA problem. If the time
entry for DP is empty, then we could not solve the k-RDSA instance within one-hour and the DP bounds
display the lower and upper bounds computed so far. If OPT is empty, then either the k-RDSA solutions
could not be realized or the k-RDSA instance could not be solved within one hour.

solution size DP bounds time (in seconds)

graph k CH OH OPT| lower upper|] CH OH DP
coAuthorsDBLP 2 97 62 61 61| 1.47 0.08 0.043
(n~2.9-105, 5 531 321 317 317 317 141 0.29 26.774
m =~ 9.7-10°, 10) 1,372 893 869 869| 1.03 0.48 1.58
A = 336) 100| 21,267 15,050 10,577 11,981| 1.13 885.79
coPapersCiteseer 2 203 80 78 78! 9.9 0.1 0.394
(n ~4.3-10%, 5 998 327 327 327 327(10.32 0.19 0.166
m~1.6-107, 10] 2,533 960 960 960 960| 8.83 0.74 0.718
A = 1188) 100| 51,456 22,030 22,007| 22,007 22,007| 5.97 263.95 264.553
coPapersDBLP 2| 1,890 1,747 950 1,733(11.28 2.13
(n~5.4-10°, 5/ 9,085 8219 4414 8,121/10.66 28.83
m ~ 1.5-107, 10| 19,631 17,571 9,557 17,328| 9.95 149.56
A = 3299) 100(258,230 128,143 233,508|22.16

Real-World Instances. We considered the five social networks from the co-author citation
category in the 10" DIMACS challenge [6].

We compared the results of our upper bounds against an implementation of the clustering-
heuristic provided by Lu et al. [13] and against the lower bounds given by the dynamic program.
Our algorithm could solve 26% of the instances to optimality within one hour. Interestingly, our
exact approach worked best with the coPapersCiteseer graph from the 10" DIMACS challenge
although this graph was the largest one considered (in terms of n 4+ m). For all tested values of k
except k = 2, we could optimally k-anonymize this graph and for £ = 2 our upper bound heuristic
is just two edges away from our lower bound. The coAuthorsDBLP graph is a good representative
for the results on the DIMACS-graphs, see Table 1: A few instances could be solved optimally
and for the remaining ones our heuristic provides a fairly good upper bound. One can also see
that the running times of our algorithms increase (in general) exponentially in k. This behavior
captures the fact that our dynamic program for Phase 1 iterates over all minimal solutions and
for increasing k£ the number of these solutions increases dramatically. Our heuristic also suffers
from the following effect: Whereas the maximum running time of the clustering-heuristic heuristic
was one minute, our heuristic could solve 74% of the instances within one minute and did not
finish within the one-hour time limit for 12% of the tested instances. However, the solutions
produced by our upper bound heuristic are always smaller than the solutions provided by the
clustering-heuristic, on average the clustering-heuristic results are 72% larger than the results of
our heuristic.

Random Instances. We generated random graphs according to the model by Barabési—Albert [1]
using the implementation provided by the AGAPE project [2] with the JUNG library®. Starting
with mg = 3 and mg = 5 vertices these networks evolve in ¢ € {400, 800, 1200, . .., 34000} steps. In
each step a vertex is added and made adjacent to mg existing vertices where vertices with higher
degree have a higher probability of being selected as neighbor of the new vertex. In total, we
created 170 random instances.

Our experiments reveal that the synthetic instances are particular hard. For example, even
for k = 2 and k = 3 we could only solve 14% of the instances optimal although our dynamic
program produces solutions for Phase 1 in 96% of the instances. For higher values of k the results
are even worse (for example zero exactly solved instances for £ = 10). This indicates that the
current lower bound provided by Phase 1 needs further improvements. However, the upper bound

Shttp://jung.sourceforge.net/

http://jung.sourceforge.net/

800 - *
600 - 1
600 - -

400 - N 4001 Ji h

solution size
solution size
\
\

200 - A LAY MO A 8 200 | AT |

1,500 |- i
1,000 | i

1,000 |- I 1y

solution size
solution size
\
\
\
\
\

p00 o)] 500 |- LAk i

n 104 n 10%

Figure 3: Comparison of our heuristic (always the light blue line without marks) with the clustering-
heuristic (always the light red line with little star as marks) on random data with different parameters:
Top row is for k = 2, bottom row for k = 3; the left column is for mo = 3, and the right column for mo = 5.
The linear, solid dark red line and dash-dotted blue line are linear regressions of the corresponding data
plot. One can see that our heuristic produces always smaller solutions.

provided by our heuristic are not far away: On average the upper bound is 3.6% larger than the
lower bound and the maximum is 15%. Further enhancing the advanced Erdds-Gallai test seem to
be the most promising step towards closing this gap between lower and upper bound. Comparing
our heuristic with the clustering-heuristic reveal similar results as for real-world instances. Our
heuristic always beats the clustering-heuristic in terms of solution size, see Figure 3 for k = 2
and k = 3. We remark that for larger values of k the running time of the heuristic increases
dramatically: For k = 30 our algorithm provides upper bounds for 96% of the instances, whereas
for k = 150 this value drops to 18%.

5 Conclusion

We have demonstrated that our algorithm framework is suitable to solve DEGREE ANONYMIZATION
on real-world social networks. The key ingredients for this is an improved dynamic programming
for the task to k-anonymize degree sequences together with certain lower bound techniques, namely
the advanced Erdds-Gallai test. We have also demonstrated that the local exchange heuristic due
to Liu and Terzi [12] is a powerful algorithm for realizing k-anonymous sequences and provided
some theoretical justification for this effect.

The most promising approach to speedup our algorithm and to overcome its limitations on the
considered random data, is to improve the lower bounds provided by the advanced Erdos-Gallai
test. Towards this, and also to improve the respective running times, one should try to answer
the question whether one can find in polynomial-time a minimum k-anonymization D’ of a given
degree sequence D such that D’ — D is realizable.

10

Bibliography

[1]

A. Barabdsi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):
509-512, 1999. 2, 9

P. Berthomé, J.-F. Lalande, and V. Levorato. Implementation of exponential and
parametrized algorithms in the AGAPE project. CoRR, abs/1201.5985, 2012. 9

J. Casas-Roma, J. Herrera-Joancomarti, and V. Torra. An algorithm for k-degree anonymity
on large networks. In Proc. ASONAM’13, pages 671-675. ACM Press, 2013. 1, 2

S. Chester, J. Gaertner, U. Stege, and S. Venkatesh. Anonymizing subsets of social networks
with degree constrained subgraphs. In Proc. ASONAM’12, pages 418-422. IEEE Computer
Society, 2012. 1, 2

R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 4th
edition, 2010. 13

DIMACS’12. Graph partitioning and graph clustering. 10th DIMACS challenge, 2012. URL
http://www.cc.gatech.edu/dimacs10/. Accessed April 2012. 9

D. Easley and J. Kleinberg. Networks, Crowds, and Markets. Cambridge University Press,
2010. 1

P. Erdés and T. Gallai. Graphs with prescribed degrees of vertices (in Hungarian). Math.
Lapok, 11:264-274, 1960. 6

B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A
survey of recent developments. ACM Computing Surveys, 42(4):14:1-14:53, 2010. 1

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979. 8

S. Hartung, A. Nichterlein, R. Niedermeier, and O. Suchy. A refined complexity analysis of
degree anonymization in graphs. In Proc. 40th ICALP, volume 7966 of LNCS, pages 594—606.
Springer, 2013. 1, 2, 5, 8, 13

K. Liu and E. Terzi. Towards identity anonymization on graphs. In Proc. SIGMOD ’08, pages
93-106. ACM, 2008. 1, 2, 3, 4, 5, 10, 13

X. Lu, Y. Song, and S. Bressan. Fast identity anonymization on graphs. In Proc. DEXA’12,
Part I, volume 7446 of LNCS, pages 281-295. Springer, 2012. 1, 2, 6, 9, 17

P. Samarati. Protecting respondents identities in microdata release. IEEE Transactions on
Knowledge and Data Engineering, 13(6):1010-1027, 2001. 1

P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing infor-
mation. In Proc. PODS’98, pages 188-188. ACM, 1998. 1

L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(5):557-570, 2002. 1

B. Thompson and D. Yao. The union-split algorithm and cluster-based anonymization of
social networks. In Proc. Jth ASIACCS’09, pages 218-227. ACM, 2009. 1

A. Tripathi and S. Vijay. A note on a theorem of Erdos & Gallai. Discrete Math., 265(1-3):
417-420, 2003. 6

B. Zhou and J. Pei. The kanonymity and [-diversity approaches for privacy preservation in
social networks against neighborhood attacks. Knowledge and Information Systems, 28(1):
47-77, 2011. 2

B. Zhou, J. Pei, and W. Luk. A brief survey on anonymization techniques for privacy preserv-
ing publishing of social network data. ACM SIGKDD Explorations Newsletter, 10(2):12-22,
2008. 2

11

http://www.cc.gatech.edu/dimacs10/

H]

B =1{0,15,0,3,2,1,0,2,0,1} B = {0,15,0,2,2,2,0,0,0,3}

Figure 4: Our smallest example where “jumps” are necessary to obtain a minimum-size solution. The
only minimum solution to 2-anonymize the left graph is to add the bold edges in the right graph. Observe
that, although there are two degree-four vertices in the graph, the solution lifts a degree-three vertex to
degree five, that is, there is a “jump” of two.

A Detailed Description of the Algorithms for Phase 2: Re-
alizing the k-anonymous degree sequence

Phase 2.1: Finding a Degree-Vertex Mapping. Given a graph G with its block sequence B
and a k-anonymous block sequence B’ © B, the two main difficulties that arise when trying to
find a best possible (realizable) degree-vertex mapping for B’ are as follows: To illustrate to
first one, consider to 2-anonymize a graph consisting of two connected components {a,b,c} and
{d, e} where each component is just a path. Hence, the block sequence is B = {0,4,1} and a
minimum solution would be to insert an edge between two degree-one vertices, resulting in the
block sequence B’ = {0,2,3}. Given B’, a degree-vertex mapping has to choose two degree-one
vertices where all but the choice {d, e} leads to a realization. Hence, the basic problem is that a
degree-vertex mapping has to choose x many vertices from block ¢ which is of size more than x
and thus the assignment is non-unique. In our experiments we observed that this difficulty can
be solved satisfactorily by randomly selecting the vertices from the blocks. However, the second
difficulty is a more severe problem, also on practical instances.

Assume that B = {3,2,1} is the block sequence of our input graph (three degree-zero vertices
and a path of length two) and the result of Phase 1 is the 2-anonymized block sequence B’ =
{2,2,2}. Now, the difficulty arises that there are actually two “interpretations” of B’: The first
(natural) one would be to increase a degree zero up to one and a degree two up to three. However,
the second would be that one degree zero is increased by two up to three. We call this a jump since
a degree is increased “over” a mnon-empty block, while the natural interpretation (making most
sense in the majority of the cases) is that a degree is increased to the next non-empty block B and
from there, first the vertices originally in B are increased further. While in the example above the
second “jump”-interpretation cannot be realized (only one vertex has non-zero demand), Figure 4
illustrates an example where the only realizable degree-vertex mapping has such a jump.

In our experiments, against our a-priori intuition, we observed that the k-anonymized se-
quences B’ (computed in Phase 1) have typically less than ten “jump blocks” (a jump over these
blocks is possible) and for each of these blocks up to five degrees can jump “over” it. Since the
number of jump blocks is reasonably small and as we try to realize many degree-vertex mappings
for each B’ (100 in the results presented in Section 4), it turned out that, for increasing « from zero
up to the number of jump blocks, iterating through all possibilities to choose o jump blocks is
a good choice. Having fixed the jumps, it follows how many degrees from ¢ are increased to j
and we randomly (25 trials for each jump configuration) select the appropriate number of vertices
from block B; in G. In total, for each given B’ from Phase 1 we try to realize 25 - 100 = 2500
degree-vertex mappings. These parameters (25 and 100) have been chosen according to the results
in preliminary experiments and seem to be a good compromise between expected success rate and
the needed time.

Phase 2.2: Realizing a Degree-Vertex Mapping. In the last part of finding a realization of
a k-anonymized sequence B’ in a graph G = (V, E), one is given a degree-vertex mapping which

12

provides a non-negative integer demand for each vertex and the task is to decide whether it is
realizable, that is, is there an edge insertion set .S such that in G + .S the amount of incident new
edges for each vertex is equal to its demand. Formally, let d: V' — IN be the function providing
the demand of each vertex. Whether d is realizable can be decided in polynomial-time by solving
an f-factor instance and it has been shown that, for the maximum degree A of G, d is always
realizable if -, o, d(v) > (A% + 4A + 3)? [11, Lemma 4]. We have implemented a so-called local
exchange heuristic by Liu and Terzi [12] which turned out to perform surprisingly well. Indeed,
we here present also some theoretical justification for this, formally proving that basically the
same lower bound (as for f-factor) on > _., d(v) is enough to guarantee that the local exchange
heuristic always realizes d.

In principle, the local exchange heuristic adds edges between vertices as long as possible to
satisfy their demand and if it gets stuck at some point, then it tries to continue by exchanging
an already inserted edge. Formally, it works as follows: Let S be the set of new edges which is
initialized by @. As long as there are two vertices u and v with non-zero demand, check whether
the edge {u,v} is insertable, meaning that neither {u,v} € E nor {u,v} € S. If it is insertable,
then add {u,v} to S and decrease the demand of u and v by one. If this procedure ends with
all vertices having demand zero, then S is an insertion set realizing d. Otherwise, we are left

veV

with a set V4 of vertices with non-zero demand. If there are two vertices V1,02 € Vd, then for
each edge {u,w} € S check whether the two edges {v1,u} and {ve, w} or {v1,w} and {ve,v} are
insertable. If so, then delete {u,w} from S, insert the two edges that are insertable, and decrease
the demand of v; and ve by one. In the special case of vd containing only one vertex v, then it
holds that the remaining demand of v is at least two, because »_ . d(v) can be assumed to be
even (otherwise it is not realizable). In this case perform the following for each edge {u,w} € S:
Check whether {v,u} and {v,w} are insertable and if so, then insert them to S, delete {u,w}
from S, and decrease the demand of v by two.

We have implemented the local exchange heuristic so that it first randomly tries to add edges
and then, if stuck at some point, performs the above described exchange operations (if possible).
We conclude with proofing a certain lower bound on)_, , d(v) which guarantees the success of
the local exchange heuristic. As a first step for this, we prove that any demand function can be
assumed to require to increase the vertex degrees at most up to 2A2.

Lemma 3. Any minimum-size k-insertion set for an instance of DEGREE ANONYMIZATION yields
a graph with mazimum degree at most 2A2.

Proof. Before proving Lemma 3, we introduce the terms “co-matching” and “co-cycle cover” and
prove an observation concerning their existence. A graph G = (V, E) contains a co-matching of
size ¢ if G contains a matching of size £, that is, a subset of £ non-overlapping edges of G. A
perfect co-matching of G is a co-matching of size [V|/2. Analogously, G contains a co-cycle cover
if G contains a cycle cover, that is, a subgraph of G with |V| vertices such that each vertex has
degree two. We prove the following observation that shows sufficient conditions for the existence
of co-matchings and co-cycle covers.

Observation 1. Let G = (V, E) be a graph and let V! C'V be a vertex subset with |V'| > 2A+1.
Then, G[V'] contains a co-cycle cover and if |V'| is even, then G[V'] contains a perfect co-matching.

Proof. Since |V'| > 2A+1, it follows that in G[V’] every vertex has degree at least |V/|—A > [V'|/a.
Hence, using Diracs Theorem [5], it follows that G[V’] contains a Hamiltonian cycle C. Thus it
contains a co-cycle cover. Additionally, if |[V’| is even, then it follows that the number of vertices
in C is even and, hence, taking every second edge of C results in a perfect matching. O

We now prove Lemma 3. We consider an instance (G = (V, E), k) of DEGREE ANONYMIZATION.
Let S be a minimum-size k-insertion set for G. Suppose the maximum degree in G + S is greater
than 2A2. Let G be the graph that is obtained from G by iterating over all edges in S (in an
arbitrary order) and adding an edge if it does not increase the maximum degree A. Let S C S be
the edges not contained in G. By definition G + S is a k-anonymous graph and adding any edge

13

from S to G causes a maximum degree of A + 1. Hence, denoting by X C V(S) the vertices of
degree A, each edge in S has at least one endpoint in X. Let Z = V(S)\ X. Clearly, the vertices
in G + S that have degree greater than A are a subset of V(S) = X U Z. Next, we show how to
construct an edge set of size less than |S| whose addition to G results in a k-anonymous graph.
Case 1: |X| < (A +3)A.
Since, each edge in S contains at least one endpoint from X, every vertex in Z is incident to
at most (A + 3)A edges in S. Hence, the degree of each vertex from Z in G + S is less than
(A +3)A + A < 2A2 Thus, only the vertices from X can have degree more than 2A? in G+ S
and each of them is adjacent to at least 2A? — (A + 3)A > A%/2 + 1 vertices from Z. Now for
each vertex u of maximum degree in G + S find two non-adjacent neighbors of it in Z, delete the
edges between v and the neighbors and insert an edge between the neighbors. (Observe that the
neighbors always exist, since G has maximum degree at most A — 1 and each such vertex u has
at least A?/2 +1 > A — 1 neighbors from Z.) Hence, we get a smaller set of edge additions that
also transforms G into a k-anonymous graph, implying a contradiction.
Case 2: [X|> (A+3)A
We give an algorithm that transforms G by inserting at most |§ | edges into a k-anonymous graph.

1. Initialize S’ by a copy of S and G’ by a copy of G.

2. While there are any two vertices v,u € V(S’) that are non-adjacent and both have degree
less than A in G’ add the edge {u,v} to G’, delete one edge in S’ that is incident to v and
one that is incident to w.

3. Let Z/ ={ue ZnV(S)|degy (u) < A}. Find a subset of vertices Y C X such that there
is co-matching in G’ from Z’ to Y such that each vertex in Y is contained in exactly one co-
matching edge and each vertex z € Z' is contained in exactly min{A, degg, 5(2)} —degq/(2)
co-matching edges. Add the edges of this co-matching.

To complete the algorithm we distinguish between several cases. Before that, observe that after
Step 2 the maximum degree of G’ is still A. Additionally, since each vertex in Y C X is adjacent
to only one co-matching edge and each vertex z € Z’ gets only min{A,degg, 5(2)} — degg/(2)
additional edges, after Step 3 the maximum degree of G’ is A+1. As Step 2 is exhaustively applied,
Z' induces a clique and thus |Z’| < A. This implies that |Y| < A2. The existence of the set Y
follows from the fact that after Step 2 in G’ each vertex in Z’ is adjacent to at most A — 1 vertices
in X and |X| > (A+3)A. Thus for each vertex z one can pick any min{A, degs_ 5(2)} —degg/(2)
non-adjacent vertices for X that are disjoint from those chosen for the others.

Additionally, since all vertices from X have degree larger than A in G+ S, the degree of each
vertex in G’ is at most as its degree in G' 4+ S. Denote by X' all vertices in G + S that have
degree greater than A but are not contained in Y. All vertices in X’ have degree A in G’ (see
Step 3). Clearly, X’UY are exactly the vertices in G+ S that have degree greater than A and thus
|X'UY| > k. Furthermore, we do not change the degree of any vertex V' \ (X’ UY"). Thus, in the
following cases it remains to argue that none of the vertices in X’ UY damage the k-anonymous
constraint and that the new solution adds less edges than the old one.

Case 2.1: |X'| is even
As (X \Y) C X" and |Y] < A? it follows that |X’| > 3A. Hence, by Observation 1 there is
a perfect co-matching on the vertices in X’ and inserting the corresponding edges results in a
k-anonymous graph. The number of corresponding edge additions is less than those in S, because
S increases the degree of all vertices in X’ UY also at least to A 4+ 1 and for some of them even
above 2AZ,

Case 2.2: |X'| is odd
Case 2.2.1 k< |X'UY|/2

We increase via a co-matching on 2[| vertices from X’ the degree of enough vertices to A+1
such that together with Y there are at least k degree-(A + 1) vertices. Observe that, |X'| —

o=l ‘Yl] > 2k —|Y| = (k— |Y]) = k and, thus, there are at least k vertices left with degree A.

k=]Y|
2

14

Case 2.2.2 k> | X' UY]/2
Case 2.2.2.1 |Y| is even In this case we add the edges of a co-matching on Y and the edges of
a co-cycle in X’. This results in a k-anonymous graph with maximum degree A + 2. Note that
the number of edge additions in this solution to get degree A + 2 for the vertices in X' UY is less
than (A + 2) - | X’ UY| whereas for G + S the set S contains at least

k(282 - A) _[X'UY] (287 - A)
2 - 4

edges to increase for at least k vertices the degree from at most A to at least 2A2.

By Observation 1, there exists a co-cycle cover on X’ since |X’| > 3A. It remains to argue
that there is co-matching on Y. This follows from Observation 1 in case of |Y| > 2A. However,
in case of |Y| < 2A, because of | X| > (A + 3)A the choice of Y in Step 3 can be easily adjusted
to guarantee the existence of such a matching.

Case 2.2.2.2 |Y] is odd
Observe that from k > | X’ UY|/2 it follows that G + S can contain at most two vertex-degrees
that are larger than A. We first argue that there cannot be just one vertex-degree greater than A.
Recall that X' UY are exactly the vertices in G + S the have degree larger than A, say they have
degree a. We show that the difference in the sum of the vertex degrees from G compared toG+S
is an odd number, a contradiction. First, note that the number of edges that are deleted from S
in Step 2 is an even number, we ignore them in the following. Second, S also contains edges that
increase (as in Step 3) the degree of each vertex z € Z' from degg,(z) to min{A, degs, 5(2)} and
they contribute 2|Y| to the sum of the degrees. Additionally, it contributes | X' UY|-(a—A) —|Y|
to increase the degree of the vertices from A to a (note that minus Y is necessary because these
degrees are already counted for the vertices in Z’). Hence, the difference in the sum of the degrees
from G to G+ S is |Y|+ (| X' UY|- (a — A)) which is by our assumptions on |X’| and |Y| an odd
number, implying a contradiction.

It remains to consider the case where G+ S contains two vertex-degrees that are larger than A.
Hence, k = | X' UY|[/2. Again we consider the difference in the sum of the vertex-degree from G
to G + S. The vertex set X’ UY is partitioned into a set P; the has degree a; in G+ S and Py
that has degree as. Then the difference on the sum of the degrees is

2[Y[+|Pi[(ar - A) + [Pof(az — A) — [V
Y+ Pr (a1 = A)+ |P] (a2 — A)
odd odd odd even

Since |Y| is odd exactly one of |Pi|(a; - A) or |P:|(az — A) has to be an odd number. This
implies together with the assumption that | X’ UY| = |P; U P, is an even number that both | P |
and |P;| are odd numbers. Hence, since k = | X’ UY|/2 this implies that k is an odd number.
However, in this case we can make G’ k-anonymous by just adding a co-matching on &k — |Y|
vertices in X’. O O

Remark. We strongly conjecture that the bound in Lemma 3 is not tight. The worst example
we found is a graph consisting of two disjoint cliques of size A and A + 1, respectively, and
setting £ = n. The only k-insertion set for this instance makes the whole graph a clique and, thus,
doubles the degree. We conjecture that the bound can be improved to 2A.

By Lemma 3 we may assume that the the maximum degree is not forced to increased by more
than 2A% — A. We now have all ingredients to prove that the local exchange heuristic always
realizes “large” demand functions.

Theorem 3. Let G = (V, E) be a graph with mazimum degree A and let d: V — W be a demand
function such that max,cy d(v) + degg(v) < 2A2. The local exchange heuristic always realizes d
if Ypey dv) > 20A1 + 4A2.

15

Proof. Towards a contradiction, assume that the local exchange heuristic gets stuck at some point
such that no edge is insertable and no further exchange operation can be performed. Denote
by vV the set of vertices still having a non-zero demand in V4. Let S be the set of new edges
already added at this point. We make a case distinction on the size of S and vd,

Case 1: |Vd| > 2A% +2
In this case consider any vertex v € V4 and observe that it cannot have more than 2A2 neighbors
in G and S together. Hence, there is a vertex u € v such that {v,u} is insertable.

Case 2: |S| > 8A*

Consider first the subcase where V4 consists only of one vertex v. Hence, the demand of v is
at least two and since no exhange operation is applicable, for all edges {u,w} € S it holds that
either {v,u} or {v,w} is not insertable. However, as v can have at most 2A? neighbors in G and S
together, from the lower bound on S it follows that there is a least one edge {u, w} € S where the
exchange operation can be applied.

In the last subcase assume that there are two vertices vi,vy € vd, Again, as no exchange
operation can be applied, for each edge {u,w} € S it holds that either one of the edges {vi,u}
and {ve,w} or one of {vy,w} and {ve,u} is not insertable. However, for vertex vy (v2) it holds
that there are less than (2A2%)? = 4A* edges in S which contain a neighbor of v1 (vg, resp.). Hence,
from |S| > 8A* it follows that there is an edge {u,w} in S where each of {u,w} is non-adjacent
to each of {v1,v2} and thus the exchange operation can be applied. This completes Case 2.

Since the demand of each vertex in V9 is at most 2A2, from Case 1 and € := d(v) >
20A* + 4A? it follows that |S| is at least

veV

_wvd . oa2 _ 2 2
£ |V2| 2A 25 (2A2+2)2A > gAY

Hence, Case 2 applies and this causes a contradiction to the assumption that the local exhange
heuristic got stuck at some point. | O

B Appendix: Full experimental results

Further Real-World Instances. Besides the DIMACS instances we consider coauthor net-
works derived from the DBLP dataset where the vertices represent authors and the edges rep-
resent co-authorship in at least one paper. The DBLP-dataset was generated on February 2012
following the documentation from http://dblp.uni-trier.de/xml/. As it turned out that this
DBLP graph is too large for our exact approach, we derived the following subnetworks: First,
we made the graph sparser by making two vertices adjacent if the corresponding two authors are
co-authors in at least two, three or more papers instead of one paper. We denote these graphs
by graph_thres_1 (originial graph), graph_thres_2, ..., graph_thres_5. Second, we just considered
papers that appeared in some algorithm engineering or algorithm theory conference (the exact
conference list here is: SEA, WEA, ALENEX, ESA, SODA, WADS, COCOON, ISAAC, WAL-
COM, AAIM, FAW, SWAT) and removed all isolated vertices. The resulting graph is denoted by
graphConference.

16

http://dblp.uni-trier.de/xml/

Table 2: Graph parameters of the real world networks.

graph n m A
DIMACS graps coPapersDBLP 540,486 15,245,729 3,299
coPapersCiteseer 434,102 16,036,720 1,188
coAuthorsDBLP 299,067 977,676 336
citationCiteseer 268,495 1,156,647 1,318
coAuthorsCiteseer 227,320 814,134 1,372
DBLP subgraphs graph_thres_01 715,633 2511,988 804
graph_thres_02 282,831 640,697 201
graph_thres_03 167,006 293,796 123
graph_thres_04 112,949 168,524 88
graph_thres_05 81,519 107,831 71
graphConference 5,599 8,492 53

Table 3: Full list of experimental results on real-world instances with enabled data reduction. We use the
following abbreviations: CH for clustering-heuristic of Lu et al. [13], OH for our upper bound heuristic,
OPT for optimal value for the DEGREE ANONYMIZATION problem, and DP for dynamic program for the
k-RDSA problem. If the time entry for DP is empty, then we could not solve the k-RDSA instance within
one-hour and the DP bounds display the lower and upper bounds computed so far. If OPT is empty, then
either the k-RDSA solutions could not be realized or the k-RDSA instance could not be solved within one
hour.

solution size DP bounds time (in seconds)
graph k CH OH OPT lower upper CH OH DP
2 690 458 319 457 1.49 0.53
3 1,187 704 526 698 2.59 0.43
4 1,689 1,133 805 1,111 1.27 1.08
5 2,508 1,807 1,224 1,756 1.64 4.14
§ 7 3,860 2,698 1,815 2,653 0.92 5.01
8 10 6,543 4,966 3,174 4,769 1.08 43.05
5 15 10,491 8,249 5,117 7,931 1.15 7771
g 20 15,934 12,778 7,770 12,058 1.14 579.94
= 30 24,099 19,800 11,835 18,797 1.41 1,538.03
5 50 45,257 22,316 35,986 1.4
100 | 98,688 49,041 81,438 | 2.41
150 | 154,753 127,994 127,994 5.25
200 | 211,427 174,040 174,040 6.78
2 1,163 1,002 1,002 1,002 1,002 | 0.74 0.26 1.44
3 2,156 1,837 1,836 1,836 1,836 0.98 0.33 85.87
4 3,102 2,979 2,977 2,977 0.98 0.97 842.96
5 5 4,413 4,177 4,163 4,163 0.92 1.79 1,417.36
¢ 7 6,304 6,021 3,701 5,979 0.62 3.11
2 10 9,716 9,332 9,283 9,283 0.95 7.42 3,465.51
Q 15 15,843 15,117 7,920 14,932 0.85 48.58
;6 20 21,630 20,745 20,584 20,584 1.03 68.74 64.78
= 30 34,065 32,719 32,424 32,424 1.34 242.24 1,330.47
<§ 50 59,251 57,002 1.97 2,546.24
o 100 | 122,996 61,288 114,512 3.77
150 | 187,977 171,411 171,411 7.95
200 | 252,170 125,946 226,200 | 10.43

17

solution size DP bounds time (in seconds)
graph k CH OH OPT lower upper CH OH DP
2 97 62 61 61 1.47 0.08 0.04
3 253 180 179 179 179 1.26 0.06 0.12
4 344 231 230 230 0.82 0.14 0.26
5 531 321 317 317 317 1.41 0.29 26.77
& 7 817 542 414 527 0.63 0.16
QQJ 10 1,372 893 869 869 1.03 0.48 1.58
2] 15 2,352 1,549 1,481 1,481 0.97 2.62 4.63
2 20 3,323 2,188 2,081 2,081 0.84 7.69 7.64
5 30 5,381 3,557 3,391 3,391 0.75 19.2 2.40
%: 50 9,661 6,700 4,744 6,042 0.61 158.36
© 100 21,267 15,050 10,577 11,981 1.13 885.79
150 32,932 24,139 16,483 16,483 0.63 801.69 15.38
200 45,411 32,925 21,960 21,960 21,960 0.62 271.55 11.94
2 203 80 78 78 9.9 0.1 0.39
3 394 136 136 136 136 9.66 0.11 0.13
4 668 231 231 231 231 9.31 0.12 0.13
. 5 998 327 327 327 327 | 10.32 0.19 0.17
§ 7 1,915 657 657 657 657 7 0.35 0.36
g 10 2,533 960 960 960 960 8.83 0.74 0.72
5 15 5147 1,847 1,845 1,845 1,845 | 7.96 2.17 2.17
§ 20 6,829 2,627 2,627 2,627 2,627 8.4 4.1 4.13
g 30 11,667 4,273 4,273 4,273 4,273 7.62 9.58 9.47
& 50 22,795 9,312 9,311 9,311 9,311 7.48 47.5 47.51
© 100 51,456 22,030 22,007 22,007 22,007 5.97 263.95 264.55
150 81,101 36,011 35,881 35,881 35,881 5.51 490.15 487.55
200 | 113,526 51,379 51,361 51,361 51,361 4.71 995.8 984.53
2 1,890 1,747 950 1,733 | 11.28 2.13
3 3,418 3,065 1,683 3,030 | 11.66 4.75
4 6,236 5,551 2,996 5,497 | 10.36 11.63
5 9,085 8,219 4414 8,121 | 10.66 28.83
S 7 12,166 10,764 5,897 10,615 8.39 55.55
m 10 19,631 17,571 9,557 17,328 9.95 149.56
2 15 31,663 28,538 15,403 27,991 9.38 729.36
g 20 | 43,637 39,722 21,469 39,048 | 10.24 1,372.12
£ 30 70,590 34,714 62,898 11.2
S 50 | 122,378 60,535 110,295 | 14.37
100 | 258,230 128,143 233,508 | 22.16
150 | 401,143 240,068 359,665 | 46.44
200 | 540,505 268,409 485,386 | 61.74
2 290 179 166 176 7.16 0.24
3 748 483 372 475 6.76 2.81
4 1,154 729 547 714 5.67 0.97
5 1,621 1,009 745 989 5.78 1.89
= 7 2,516 1,638 1,188 1,600 4.54 5.59
%' 10 3,969 2,632 1,854 2,524 4.51 14.46
= 15 6,461 4,488 3,152 4,263 4.69 180.11
2 20 8,761 6,127 4,227 5,731 4.35 179.17
= 30 13,643 9,712 6,634 9,277 4.01 577.17
& 50 24,471 11,958 16,874 3.39
100 53,101 37,792 37,792 3.19
150 82,684 40,995 59,281 3.03
200 | 115,553 79,952 79,952 3.93
2 32 16 16 16 16 0.78 0.03 0.03
3 111 50 50 50 50 0.97 0.04 0.04
4 165 80 80 80 80 0.47 0.04 0.04
5 258 115 115 115 115 0.88 0.05 0.04
N 7 392 178 178 178 178 0.42 0.04 0.05
%' 10 609 288 288 288 288 0.47 0.07 0.06
g 15 1,098 514 502 502 0.45 0.5 0.13
2 20 1,564 784 754 754 0.45 0.7 0.65
= 30 2,581 1,389 1,299 1,299 0.41 3.79 358.02
b 50 5,094 2,729 2,410 2,410 2,410 0.38 4.13 0.52
100 | 11,281 6,764 5419 | 5419 5419 | 0.34 6.77 1.57
150 18,179 11,347 8,709 8,709 8,709 0.54 17.61 3.11
200 24,950 16,156 11,921 11,921 11,921 0.83 35.33 4.04

18

solution size DP bounds time (in seconds)
graph k CH OH OPT lower upper CH OH DP
2 38 25 25 25 25 0.26 0.02 0.02
3 71 45 44 44 0.29 0.26 0.02
4 121 69 68 68 68 0.18 0.04 0.03
5 166 94 94 94 94 0.24 0.03 0.06
x 7 276 154 150 150 0.18 0.08 0.11
%' 10 439 240 238 238 0.17 0.22 0.20
g 15 763 382 374 374 0.17 0.73 0.08
E 20 1,015 536 514 514 0.16 0.26 0.61
= 30 1,668 830 797 797 797 0.15 0.45 0.07
5 50 3,100 1,543 1,491 1,491 1,491 | 0.15 0.44 0.14
100 7,150 3,476 3,380 3,380 3,380 0.15 0.82 0.47
150 11,347 6,359 5,354 5,354 5,354 0.23 4.12 0.67
200 15,349 8,874 7,450 7,450 7,450 0.33 6.57 1.03
2 28 15 15 15 15 0.11 0.01 0.01
3 46 25 25 25 25 0.13 0.05 0.02
4 82 38 38 38 38 0.1 0.03 0.02
5 85 39 39 39 39 0.11 0.01 0.02
s 7 169 7 7 7 7 0.1 0.01 0.02
%' 10 267 134 134 134 134 0.09 0.03 0.02
= 15 481 230 229 229 229 0.09 0.07 0.02
2 20 696 323 321 321 0.08 0.15 0.02
& 30 1,145 548 548 548 548 0.08 0.03 0.03
) 50 2,174 1,041 1,039 1,039 1,039 0.08 0.08 0.07
100 5,177 2,430 2,398 2,398 2,398 0.09 0.35 0.20
150 8,165 4,071 3,813 3,813 3,813 0.16 1.2 0.30
200 11,280 6,270 5,327 5,327 5,327 0.2 3.06 0.49
2 17 9 8 8 8 0.07 0.01 0.01
3 28 12 12 12 12 0.06 0.01 0.01
4 51 25 25 25 25 0.06 0.01 0.01
5 64 31 31 31 31 0.06 0.01 0.01
3 7 135 60 60 60 60 0.06 0.01 0.01
%' 10 207 102 102 102 102 0.06 0.01 0.01
= 15 344 176 174 174 174 0.05 0.03 0.01
2 20 537 261 261 261 261 0.05 0.01 0.01
= 30 919 429 429 429 429 0.05 0.02 0.02
&b 50 1,791 857 856 856 856 0.05 0.05 0.04
100 4,248 1,956 1,953 1,953 1,953 0.05 0.12 0.11
150 6,906 3,214 3,122 3,122 3,122 0.1 0.4 0.15
200 9,581 4,590 4,375 4,375 4,375 0.16 0.88 0.24
2 64 58 58 58 58 0.04 0.04 0.04
3 104 93 93 93 93 0.01 0 0.00
4 192 154 154 154 154 0.01 0 0.02
© 5 261 216 214 214 0.01 0.02 0.02
g 7 417 346 344 344 0.01 0.04 0.05
% 10 690 553 536 536 0.06 0.22 0.78
= 15 1,122 880 851 851 0.01 0.15 0.15
8 20 1,630 1,204 1,157 1,157 0.01 0.66 1.01
= 30 2,474 1,872 1,732 1,732 0.07 11.21 1.25
] 50 4454 3,177 2,694 2,604 | 0.01 62.66 0.90
° 100 8,506 6,428 4,636 4,636 4,636 0.04 2.94 0.27
150 | 15,699 7,225 7,225 7225 | 0.41
200 21,267 9,942 9,942 9,942 0.75
2 690 457 311 457 1.69 0.47
3 1,187 698 519 698 1.59 0.37
4 1,690 1,119 802 1,111 1 0.71
5 2,502 1,816 1,219 1,756 1.73 4.61
§ 7 3,864 2,735 1,814 2,653 0.9 7.3
8 10 6,537 4,882 3,173 4,769 1.04 29.61
5 15 10,478 8,365 5,116 7,931 0.95 101.16
g 20 15,889 12,800 7,769 12,058 0.83 579.24
= 30 24,166 19,988 11,834 18,797 1.28 1,659.57
3 50 45,214 22,316 35,986 1.25
100 98,683 49,040 81,438 2.23
150 | 154,753 77,049 127,994 5.31
200 | 211,215 105,102 174,040 6.91

19

solution size DP bounds time (in seconds)
graph k CH OH OPT lower upper CH OH DP
2 1,163 1,002 1,002 T,002 1,002 | 0.65 0.26 15.90
3 2,156 1,837 1,836 1,836 1,836 0.73 0.31 270.99
4 3,103 2,983 2,977 2,977 0.54 0.76 829.92
5 5 4,416 4,173 4,163 4,163 0.59 1.67 2,491.17
e 7 6,298 6,008 3,168 5,979 0.62 2.51
2 10 9,716 9,331 4,902 9,283 0.69 7.98
Q 15 15,858 15,074 7,910 14,932 0.78 41.94
é 20 21,633 20,781 10,823 20,584 0.89 87.45
g 30 34,094 32,746 17,041 32,424 1.31 268.99
<§, 50 59,244 56,849 1.88 2,541.73
© 100 | 122,996 61,280 114,512 3.34
150 | 187,829 93,528 171,411 7.92
200 | 252,011 125,903 226,200 | 10.38

20

	1 Introduction
	2 Preliminaries
	3 Description of the Algorithm Framework
	3.1 General Framework Description
	3.2 Phase 1: Exact k-Anonymization of Degree Sequences
	3.3 Phase 2: Realizing a k-Anonymous Degree Sequence

	4 Experimental Results
	5 Conclusion
	A Detailed Description of the Algorithms for Phase 2: Realizing the k-anonymous degree sequence
	B Appendix: Full experimental results

