
Speeding up multilingual grammar development
by exploiting linked data to generate

pre-terminal rules

Sebastian Walter, Christina Unger, and Philipp Cimiano

Semantic Computing Group, CITEC, Bielefeld University

Abstract. The development of grammars, e.g. for spoken dialog sys-
tems, is a time- and effort-intensive process. Especially the crafting of
rules that list all relevant instances of a non-terminal, e.g. Greek cities or
Automobile companies, possibly in multiple languages, is costly. In order
to automatize and speed up the generation of multilingual terminal lists,
we present a tool that uses linked data sources such as DBpedia in order
to retrieve all entities that satisfy a relevant semantic restriction. We
briefly describe the architecture of the system and explain how it can be
used by means of an online web service.

1 Introduction

The development of grammars, e.g. for spoken dialog systems (SDS), is a costly
process requiring large manual investments [2]. One aspect of SDS grammar de-
velopment that is particularly costly is the process of developing pre-terminal
rules, i.e. rules that expand a non-terminal into a number of named entities. For
example, when developing a dialog system that provides access to the bus sched-
ule connecting Greek cities, one needs a list of names of Greek cities. Similarly,
when developing a dialog system that is able to perform conversions between
different currencies, one needs a list of the relevant currencies that exist world-
wide. In such cases we would like to create pre-terminal rules like the following
ones:

1 GREEK_CITY = Athens | Thessaloniki | ...

2 CURRENCY = Euro | Dollar | Yen | ...

The acquisition of lists of such entities is costly, and if the grammar needs to be
developed for different languages, this problem is exacerbated.

On the other hand, a massive amount of structured and interlinked knowledge
is currently emerging in the form of the Linked Open Data cloud1.

In this paper we present an approach that supports the acquisition of lists of
named entities in order to speed up the process of creating pre-terminal rules.
The approach exploits DBpedia as the central hub of the Linked Open Data
cloud. Given one or more examples, it retrieves the classes that those examples

1 http://lod-cloud.net/

2 Sebastian Walter, Christina Unger, Philipp Cimiano

share, as well as properties that they have in common. The user can select
those classes and properties that are relevant, which are then used to retrieve all
available entities and returns them in form of a grammar rule in ABNF format
that can be integrated into the grammar project in question.

The paper is structured as follows. In Section 2 we provide some information
about DBpedia. Section 3 then briefly describes our approach. We conclude in
Section 4. The source code can be found at https://github.com/swalter2/

TerminalEnhancement. To run the system a DBpedia SPARQL endpoint is
needed, such as the official DBpedia SPARQL endpoint2 with DBpedia 3.9.
A link to a live demo of our system can be found in the GitHub repository.

2 Linked Open Data and DBpedia

The Linked Open Data cloud consists of a large amount of interlinked RDF3

(Resource Description Framework) datasets, including knowledge bases such as
DBpedia4 and YAGO5. It has been growing steadily in recent years, now com-
prising more than 30 billion RDF triples6.

The central hub of the Linked Open Data cloud is DBpedia [1], a cross-
domain knowledge base that was extracted from Wikipedia infoboxes. The En-
glish version of DBpedia currently comprises around four million entities, most
of them organized in a consistent ontology. This ontology includes labels in a
range of languages. In addition, there are more than 100 localized versions of
DBpedia available. YAGO is another knowledge base extracted from Wikipedia,
which in contrast to DBpedia also includes information from WordNet7 in order
to categorize entities.

Such structured knowledge bases become more and more popular for various
applications. However, to our knowledge, such structured knowledge bases have
not been exploited to speed up spoken dialogue grammar development. In order
to show the potential of the structured data available on the web for rapid gram-
mar development, we present a tool that uses DBpedia in order to automatically
generate terminal rules, given some semantic restrictions provided by a grammar
developer.

3 Demonstration and system description

This section briefly describes the tool that will be demonstrated at the confer-
ence. It uses one or more resources as input and returns a terminal grammar
in ABNF format as output. Figure 1 provides an overview of the architecture.

2 http://dbpedia.org/sparql
3 http://www.w3.org/TR/rdf-primer/
4 http://dbpedia.org
5 http://www.mpi-inf.mpg.de/yago-naga/yago/
6 http://lod-cloud.net/state/
7 http://wordnet.princeton.edu/

Speeding up multilingual grammar development 3

Fig. 1. System overview

First, the user has to enter
the name of at least one (but op-
timally two or more) resources.
In the following, we will use
the input Bruce Lee and Jackie
Chan as example. Currently this
input is matched directly with
DBpedia resource labels, but we
will shortly add an index lookup
that includes anchor texts from
Wikipedia and thus allows also for
indirect matches, e.g. using as in-
put Chan or Jacky Chan. Given
the input resources, the system
retrieves all DBpedia and YAGO
classes they have in common. In
addition, all classes that belong to
the DBpedia ontology namespace
are sorted hierarchically, using the
property rdfs:subClassOf. The
most general class is presented at
the top (in the case of Bruce Lee

and Jackie Chan the class Person), the most special class is presented at the
bottom (in this case the class Actor). In addition, the number of entities of
the corresponding class are indicated in brackets after the class name. As the
class names are not always very comprehensible, e.g. Site108651247, five exam-
ple resources are provided for each class. The YAGO classes are not connected
through rdfs:subClassOf, such that they are sorted by the number of elements
they have. Furthermore, all properties for which the input resources share the
object are returned. In the case of Bruce Lee and Jackie Chan, for instance, this
would be the property country with object China.

The retrieval step works for an arbitrary number of (non-zero) input re-
sources. This means that if only one resource is given, all types of that resource
are retrieved, together with all property-object pairs of the triples it occurs in
as subject.

Next, the user has different options to proceed:

1. choosing one or more relevant property-object pairs
2. choosing one or more classes
3. choosing one or more classes and also one or more relevant property-object

pairs

If more than one class is selected, the user can furthermore choose if the se-
mantic restriction should be created by connecting all classes using AND or
OR semantics. The selected classes and properties are then used to retrieve all
resources that match those constraints. Finally, the labels of those resources,

4 Sebastian Walter, Christina Unger, Philipp Cimiano

possibly in different languages, are returned as the target terminals. Depending
on the chosen constraint(s), a different number of resources (terminals) are re-
turned. For our example of Jackie Chan and Bruce Lee, option one amounts to
choosing country with object China, returning around 6,250 terminals. Option
two would amount to selecting one or both of the classes Actor and Person.
When connecting both classes by a logical AND, 2,669 terminals are returned;
connecting them with a logical OR returns around 50,000 terminals. Option
three returns 903 terminals when choosing both classes and the property-object
pair, i.e. asking for all persons who are actors from China.

Besides the default language English, the user can currently choose one addi-
tional language, such as Spanish, German, Russian or Chinese. In case a terminal
has only an English label, but none for the selected second language, only the
English label is returned. In the demo we restricted the language choice for per-
formance reasons, but in principle the system can return terminals in arbitrarily
many different languages, as long as they are supported by DBpedia.

Finally, all returned terminals are displayed in the browser and for each
language an ABNF grammar file is generated, which can be downloaded. We
chose ABNF8, as this is one of the most common SDS grammar formats, but
the tool could be easily adapted to include other grammar formats as well, e.g.
GRXML8.

4 Conclusion

In this paper we presented a first approach of an easy-to-use tool that has the
potential to significantly speed up the development of multilingual grammars by
exploiting linked data for the generation of pre-terminal rules. As an evaluation
of the tool, we plan to compare the amount of time needed by a grammar expert
to create a terminal grammar by hand compared to the amount of time need
when being supported by our tool. This will provide us a detailed picture of the
efficiency of our approach.

Acknowledgment This work has been funded by the European Union’s Sev-
enth Framework Programme (FP7-ICT-2011-SME-DCL) under grant agreement
number 296170 (PortDial).

References

1. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia – a crystallization point for
the web of data. Web Semantics: Science, Services and Agents on the World Wide
Web, 7(3):154–165, 2009.

2. Giuseppe Riccardi, Philipp Cimiano, Alexandros Potamianos, and Christina Unger.
Up from limited dialog systems! In NAACL-HLT Workshop on Future Directions
and Needs in the Spoken Dialog Community: Tools and Data, pages 1–2. Association
for Computational Linguistics, 2012.

8 http://www.w3.org/TR/speech-grammar/

