Skip to main content

KNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data

  • Conference paper
International Joint Conference SOCO’14-CISIS’14-ICEUTE’14

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 299))

Abstract

The shift from traditional energy systems to distributed systems of energy suppliers and consumers and the power volatileness in renewable energy imply the need for effective short-term prediction models. These machine learning models are based on measured sensor information. In practice, sensors might fail for several reasons. The prediction models cannot naturally cannot work properly with incomplete patterns. If the imputation method, which completes the missing data, is not appropriately chosen, a bias may be introduced. The objective of this work is to propose the k-nearest neighbor (kNN) regression as geo-imputation preprocessing step for pattern-label-based short-term wind prediction of spatio-temporal wind data sets. The approach is compared to three other methods. The evaluation is based on four turbines with neighbors of the NREL Western Wind Data Set and the values are missing uniformly distributed. The results show that kNN regression is the most superior method for imputation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batista, G., Monard, M.C.: A study of k-nearest neighbour as an imputation method. In: HIS (2003)

    Google Scholar 

  2. Corchado, E., Wozniak, M., Abraham, A., de Carvalho, A.C.P.L.F., Snásel, V.: Recent trends in intelligent data analysis. Neurocomputing 126, 1–2 (2014)

    Article  Google Scholar 

  3. Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E.: A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews 12(6) (2008)

    Google Scholar 

  4. Jerez, J.M., Molina, I., García-Laencina, P.J., Alba, E., Ribelles, N., Martín, M., Franco, L.: Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 50(2) (October 2010)

    Google Scholar 

  5. Kramer, O., Gieseke, F.: Short-term wind energy forecasting using support vector regression. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślęzak, D. (eds.) SOCO 2011. AISC, vol. 87, pp. 271–280. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data. John Wiley & Sons, Inc., New York (1986)

    Google Scholar 

  7. Mellit, A., Pavan, A., Benghanem, M.: Least squares support vector machine for short-term prediction of meteorological time series. Theoretical and Applied Climatology 111(1-2) (2013)

    Google Scholar 

  8. Milligan, M., Porter, K., DeMeo, E., Denholm, P., Holttinen, H., Kirby, B., Miller, N., Mills, A., O’Malley, M., Schuerger, M., Soder, L.: Wind power myths debunked. IEEE Power and Energy Magazine 7(6) (2009)

    Google Scholar 

  9. Mohandes, M., Halawani, T., Rehman, S., Hussain, A.A.: Support vector machines for wind speed prediction. Renewable Energy 29(6) (2004)

    Google Scholar 

  10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12 (2011)

    Google Scholar 

  11. Potter, C.W., Lew, D., McCaa, J., Cheng, S., Eichelberger, S., Grimit, E.: Creating the dataset for the western wind and solar integration study (u.s.a.). In: 7th International Workshop on Large Scale Integration of Wind Power and on Transmission Networks for Offshore Wind Farms (2008)

    Google Scholar 

  12. Treiber, N.A., Heinermann, J., Kramer, O.: Aggregation of features for wind energy prediction with support vector regression and nearest neighbors. In: European Conference on Machine Learning (ECML), Workshop Data Analytics for Renewable Energy Integration (DARE) (2013)

    Google Scholar 

  13. Wang, Y., Wu, D.L., Guo, C., Wu, Q.H., Qian, W.Z., Yang, J.: Short-term wind speed prediction using support vector regression. In: 2010 IEEE Power and Energy Society General Meeting (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jendrik Poloczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Poloczek, J., Treiber, N.A., Kramer, O. (2014). KNN Regression as Geo-Imputation Method for Spatio-Temporal Wind Data. In: de la Puerta, J., et al. International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-319-07995-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07995-0_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07994-3

  • Online ISBN: 978-3-319-07995-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics