
ar
X

iv
:1

30
4.

67
07

v2
 [

cs
.D

S]
 1

1
O

ct
 2

01
3

Counting approximately-shortest paths

in directed acyclic graphs

Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
e-mail: {mmihalak,rsramek,widmayer}@inf.ethz.ch

Abstract. Given a directed acyclic graph with positive edge-weights,
two vertices s and t, and a threshold-weight L, we present a fully-
polynomial time approximation-scheme for the problem of counting the
s-t paths of length at most L. We extend the algorithm for the case of
two (or more) instances of the same problem. That is, given two graphs
that have the same vertices and edges and differ only in edge-weights,
and given two threshold-weights L1 and L2, we show how to approxi-
mately count the s-t paths that have length at most L1 in the first graph
and length not much larger than L2 in the second graph. We believe that
our algorithms should find application in counting approximate solutions
of related optimization problems, where finding an (optimum) solution
can be reduced to the computation of a shortest path in a purpose-built
auxiliary graph.

1 Introduction

Systematic generation and enumeration of combinatorial objects (such as graphs,
set systems, and many more) has been a topic of extensive study in the field of
combinatorial algorithms for decades [10]. Counting of combinatorial objects has
been investigated at least as thoroughly, even leading to their own computational
complexity class #P, defined in Valiant’s seminal paper [14]. A counting problem
usually asks for the number of solutions to a given combinatorial problem, such
as the number of perfect matchings in a bipartite graph. In combinatorial op-
timization, the number of optimum solutions can sometimes be computed by a
modification of an algorithm for finding a single optimum solution. For instance,
for shortest s-t paths in graphs with positive edge weights, Dijkstra’s algorithm
easily admits such a modification. The problem we discuss in this paper has a
more general flavor: We aim at counting the number of approximate solutions,
in the sense of solutions whose objective value is within a given threshold from
optimum. For shortest s-t paths, it is not obvious how to count the number of
paths within, say, 10% from optimum. A related problem of enumerating fea-
sible solutions makes a step in this direction: If we can enumerate solutions in
order of decreasing quality, starting from an optimum solution, we have a way to
count approximate solutions. Even though for some problems there are known
enumeration algorithms that return the next feasible solution in the sequence
of solutions within only polynomial extra time (called “polynomial delay”), this

http://arxiv.org/abs/1304.6707v2

approach will usually not be satisfactory in our setting. The reason is that the
number of approximate solutions can be exponential, and counting by enumer-
ating then takes exponential time, while our interest is only in the count itself.

In this paper we propose a way to count approximate solutions for the short-
est s-t path problem in directed acyclic graphs (DAGs) in polynomial time, but
the count that we get is only approximate, even though we come as close to the
exact count as we wish (technically, we propose an FPTAS). We also show that
exact counting for our problem is #P-hard, thus (together with the FPTAS)
fully settling its complexity. We achieve our result by a modification of a con-
ceptually interesting dynamic program for all feasible solutions for the knapsack
problem [13]. Our motivation for studying our counting problem comes from a
new approach [2] to cope with uncertainty in optimization problems. There, we
not only need to count the number of approximate solutions for a given problem
instance, but we also need to count the number of solutions that are approximate
(within a given approximation ratio) for two problem instances at the same time.
For the case of shortest s-t paths, this means that we are given two input graphs
that are structurally identical, but are allowed to differ in their edge weights.
We now want to count the number of s-t paths that are within, say, 10% from
optimum in both input graphs at the same time. For this problem we propose
both a pseudo-polynomial algorithm and an algorithm that calculates an approx-
imate solution for a potentially slightly different threshold in fully polynomial
time. Our hope is that our study paves the way for approximately counting ap-
proximate solutions for other optimization problems, such as minimum spanning
trees.

The rest of the paper is organized as follows. We outline possible implications
of our result in Section 1.1. We show in Section 1.2 that our problem is #P-
complete. We present the algorithms in Section 2, and conclude the paper in
Section 3.

1.1 Dynamic Programming as Shortest-Path Computation in DAGs

The concept of computing a shortest s-t path in a directed acyclic graph has a
large number of applications in many areas of algorithmics. This is partly due
to the fact that dynamic programming algorithms in which the inductive step
consists of searching for a maximum or a minimum among some functions of
previously-computed values can be viewed as the problem of looking for the
shortest or longest path in a directed acyclic graph.1

In many problems that admit a dynamic programming solution we are inter-
ested not only in the single optimum, but also in other approximately optimal
solutions. For instance, if we single out the context of analysis of biological data,
de novo peptide sequencing [4,11], sequence alignment [12], or Viterbi decoding
of HMMs [3,5] all use dynamic programming to find a shortest path in some
implicit graph. Due to the nature of the data in these applications, producing a

1 Note that due to the lack of cycles, the problems of looking for shortest and longest
paths on DAGs are computationally identical.

single solution is often insufficient and enumerating all solutions close to the op-
timum is necessary. Our contribution, therefore, provides a faster solution than
explicit enumeration for the problems where counting of approximate solutions
is required [12]. Counting and sampling from close-to-optimum solutions is the
key-element of the recent optimization method with uncertain input data of
Buhmann et al. [2]. Our work thus makes a step towards practical algorithms in
this context.

1.2 Counting Approximate Solutions is #P-Complete

The problem of counting the number of all self-avoiding s-t walks in a directed
(or undirected) graph is known to be #P-complete [15]. The proof makes use
of graphs containing cycles, thus it cannot be used to show the hardness of the
problem of counting approximate shortest paths on a directed acyclic graph.
In fact, we can easily count all s-t paths in a directed acyclic graph in time
proportional to the number of edges, if we traverse the graph vertices sorted
in topological order and add up the number of paths arriving to each vertex
from its predecessors. The difficulty thus lies in the addition of edge-weights and
the requirement to count s-t paths of length at most L. In the following, we
show that this problem is #P-complete, by a reduction from the NP -complete
partition problem. Given a set of positive integers S = {s1, . . . , sn}, the partition
problem asks for a partition of S into sets S1 and S2 such that the sums of
numbers in both sets are equal.

Given an instance S = {s1, . . . , sn} of the partition problem, we construct a
graph with n+ 1 vertices v1, . . . , vn+1 as follows. We consider the elements of S
in an arbitrary order s1, . . . , sn. Then, for every i < n, the graph will contain two
parallel edges between vertices vi and vi+1 with lengths si and −si, respectively.
Then every path from v1 to vn+1 corresponds to one partition of S to subsets S1

and S2. If, between two consecutive vertices vi and vi+1, the edge with length
si is chosen, si will belong to the set S1. If the chosen edge has length −si,
the element si will belong to the set S2. The length of the v1-vn+1 path then
corresponds to the difference between the sums of elements in S1 and in S2 and
the number of paths of length 0 is then equal to the number of optimal solutions
of the partition problem.

If we had an algorithm that can count the number of v1-vn+1 paths of length
at most −1 and the number of v1-vn+1 paths of length at most 0, the difference
between these two numbers is the number of paths of length exactly 0 and thus
the number of solutions to the partition problem.

Since the partition problem is reducible from the #P-complete knapsack
problem [6] and its own reduction as well as ours is parsimonious [9], the problem
of counting all s-t paths of length at most L is #P-complete. Note that the
existence of parallel edges is not necessary for the reduction; we could bisect
each parallel edge creating an auxiliary vertex to form a graph of the same
functionality but without parallel edges. Also, observe that the use of negative
edge-weights is not necessary; we can add to every edge-weight a very large

number M (say, the maximum number in S), and then ask whether there exists
a path of length nM . Thus, we have shown the following.

Theorem 1. Let G be a directed acyclic graph with integer edge-weights, and

L be an integer. The problem of counting all s-t paths of length at most L is

#P-complete, even if all edge-weights are non-negative.

2 Approximation Algorithms

In this section we present an FPTAS for our counting problem. That is, we
present an algorithm that when given a directed acyclic graph G on n vertices,
two dedicated vertices s and t, a weight-threshold L, and a constant ε > 0,
computes a (1 + ε)-approximation of the total number of s-t paths of length at
most L, and which runs in time polynomial in both n and 1

ε .
Let us note why the most immediate attempt to solve the problem directly

does not work. We could try to calculate the number of paths from s to each
vertex i that are shorter than all possible thresholds L. We can do this incremen-
tally by calculating the paths for vertices sorted in topological order and for each
new vertex combining the paths that arrived from previously computed vertices.
We can then pick some polynomially large subset of the thresholds L and round
all distances down to the nearest one in the subset. While we would end up with
an algorithm of polynomial run-time, it would not constitute a FPTAS, since we
would exactly count the number of paths that are no longer than some length
L′ which does not differ much from our desired maximum length L, instead of
approximately counting the number of solutions that are shorter than the exact
length L.

We first show a recurrence that can be used to exactly count the number of
s-t paths of length at most L. Evaluating the recurrence takes exponential time,
but we will later show how to group partial solutions together in such way that
we trade accuracy for the number of recursive calls. We adapt the approach of
Štefankovič et al. [13], which they used to approximate the number of all feasible
solutions to the knapsack problem.

Let G be a directed acyclic graph with n vertices. We will label the vertices
v1, . . . , vn in such order that there is no path from vi to vj unless i < j, i.e.,
v1, . . . , vn defines a topological ordering. We suppose that v1 = s and vn = t,
otherwise the graph can be pruned by discarding all vertices that appear before
s and after t in the topological order, since no path from s to t ever visits these.

Now, for a given L, instead of asking for the number of s-t paths that have
length at most L, we indirectly ask: for a given value a, what is the smallest
threshold L′ such that there are at least a paths from s to t of length at most
L′? Let τ(vi, a) denote the minimum length L′ such that there are at least a

paths from v1 to vi of length at most L′. To find the number of s-t paths of
length at most L using this function τ , we simply search for the largest a such
that τ(vn, a) ≤ L, and return it as the output. In particular, if the length of
the shortest s-t path is OPT (which can be computed in polynomial time),

we can find, for any ρ > 1, the number of ρ-approximate s-t paths by setting
L := ρOPT .

For a concrete vertex vi with in-degree di, let us denote its di neighbors
that precede it in the topological order by p1, . . . , pdi

and let us denote the
corresponding incoming edge lengths by l1, . . . , ldi

. For simplicity, we usually
drop the index i when it is clear from the context and just write d, p1, . . . , pd
and l1, . . . , ld. Now, τ(vi, a) can be expressed by the following recurrence

τ(v1, 0) = −∞
τ(v1, a) = 0, ∀a : 0 < a ≤ 1

τ(v1, a) = ∞, ∀a : a > 1

τ(vi, a) = min
α1,...,αd∑

αj=1

max
s

(τ(ps, αsa) + ls).

Intuitively, the a paths starting at v1 and arriving at vi must split in some
way among incoming edges. The values αj define such split. We look for a set
of α1, . . . , αd that minimizes the maximum allowed path length needed such
that the incoming paths can be distributed according to αj , j = 1, . . . , d. Note
that while the values of αia do not have to be integer, τ(vi, αia) is equal to
τ(vi, ⌈αia⌉). Moreover, when evaluating the recursion, it is enough to search for
values αi such that each of the values α1a, . . . , αda is an integer.

Calculating τ using the given recurrence will not result in a polynomial time
algorithm since we might need to consider an exponential number of values for
a, namely 2n−2 on a DAG with a maximal number of edges.2 To overcome this,
we will consider only a polynomial number of possible values for a, and always
round down to the closest previously considered one in the recursive evaluation.
If we are looking for an algorithm that counts with 1 + ε precision, the ratio
between two successive considered values of a must be at most 1 + ε.

For this purpose, we introduce a new function τ ′. In order to achieve precision
of 1 + ε, we will only consider values of τ ′ for minimum path numbers in the
form of qk for all positive integers k such that qk < 2n−2, where q = n+1

√
1 + ε.

The values of τ ′ for other numbers of paths will be undefined. The function τ ′

is defined by the recurrence

τ ′(v1, 0) = −∞
τ ′(v1, a) = 0, ∀a : 0 < a ≤ 1

τ ′(v1, a) = ∞, ∀a : a > 1

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

(τ ′(ps, q
⌊j+logq αs⌋) + ls). (1)

To give a meaning to the expression q⌊j+logq αi⌋ when αi = 0, we define it to
be equal to 0, which is consistent with its limit when αi goes to 0. We now show
2 To see this, observe that in a topologically sorted graph G, any subset of V \ {s, t}

gives a unique candidate for an s-t path.

that the rounding does not make the values of τ ′ too different from the values
of τ .

Lemma 1. Let 1 ≤ i and i ≤ j. Then

τ(vi, q
j−i) ≤ τ ′(vi, q

j) ≤ τ(vi, q
j). (2)

Proof. We first prove the first inequality, proceeding by induction on i. The base
case holds since τ(v1, a) ≤ τ ′(v1, b) for any a ≤ b. Suppose now that the first
inequality of (2) holds for every p, p < i. Then, for every 0 ≤ α < 1,

τ ′(p, q⌊j+logq α⌋) ≥ τ(p, q⌊j+logq α⌋−p)

≥ τ(p, qj−p−1+logq α) ≥ τ(p, αqj−i).

Thus, since every predecessor of vi is earlier in the vertex ordering, we can
use the obtained inequality to get the claimed bound

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

τ ′(ps, q
⌊j+logq αs⌋) + ls

≥ min
α1,...,αd∑

αj=1

max
s

τ(ps, αsq
j−i) + ls = τ(vi, q

j−i).

The other inequality τ ′(vi, q
j) ≤ τ(vi, q

j) follows by a simpler induction on
i. The base case holds since τ(v1, x) = τ ′(v1, x) for all x. Assume now that the
second part of (2) holds for all p < i. Then

τ ′(p, q⌊j+logq αi⌋) ≤ τ(p, q⌊j+logq αi⌋) ≤ τ(p, αiq
j).

We can now use the recursive definition to obtain the claimed inequality
τ ′(vi, q

j) ≤ τ(vi, q
j):

τ ′(vi, q
j) = min

α1,...,αd∑
αj=1

max
s

τ ′(ps, q
⌊j+logq αs⌋) + ls

≤ min
α1,...,αd∑

αj=1

max
s

τ(ps, αsq
j) + ls = τ(vi, q

j).

⊓⊔

We can now use τ ′(vn, q
k) to obtain a (1+ε)-approximation for the counting

problem. Basically, for any L, we show that for the largest integer k such that
τ ′(vn, q

k) ≤ L < τ ′(vn, q
k+1), the value qk will be no more than (1 + ε)±1 away

from the optimum.

Lemma 2. Given L, let k be such that τ ′(vn, q
k) ≤ L < τ ′(vn, q

k+1) and a be

such that τ(vn, a) ≤ L < τ(vn, a+ 1). Then (1 + ε)−1 ≤ a
qk

≤ 1 + ε.

Proof. Using Lemma 1 twice, we get τ(vn, qk−n) ≤ τ ′(vn, q
k) ≤ L < τ ′(vn, q

k+1) ≤
τ(vn, q

k+1). As τ(vn, qk−n) is at most L, and a is largest such that τ(vn, a) ≤ L,
and τ is monotonous in its second parameter, it must be that qk−n ≤ a. Sim-
ilarly, τ(vn, q

k+1) is larger than L, so by monotonicity a ≤ qk+1. Thus both
a and qk must lie between qk−n and qk+1 and their ratio can be at most
qk+1−(k−n) = qn+1 = 1+ ε and at least qk−(k+1) = (1 + ε)−1/(n+1) > (1 + ε)−1.

⊓⊔
We now show that computing the values of τ ′(vi, q

k) can be done in time
polynomial in n and 1

ε . This then, together with Lemma 2, gives an FPTAS for
the counting problem.

Theorem 2. For any L, any edge-weighted directed acyclic graph G, and any

vertices s, t, there is an FPTAS that counts the number of all s-t paths in G of

length at most L in time O(mn3ε−1 logn).

Proof. Recall that a directed acyclic graph on n vertices has at most 2n−2 s-
t paths. The values of a in τ therefore span at most {1, 2, . . . , 2n−2}, and the
values of qk in τ ′ span at most {1, q, q2, . . . , qs}, where

s := logq(2
n−2) =

(n− 2)

log2 q
=

(n− 2)(n+ 1)

log2(1 + ε)
= O(n2ε−1).

Thus, we evaluate function τ ′ for at most ns = O(n3ε−1) different parameter
pairs.

To show that the evaluation of τ ′ can be done in polynomial time, we need
to show that we can efficiently find α1, . . . , αd that minimize Expression (1).
Fortunately, τ ′(vi, q

k) is monotonous with increasing k, we can thus apply a
greedy approach. Given vi, we will evaluate τ ′(vi, q

k) for all possible values of qk

in one run. Instead of looking for the tuple α1, . . . , αd such that
∑

αi = 1 we will
consider an integer tuple k1, . . . , kd that minimizes maxi τ

′(pi, q
ki) restricted by∑

qki > qk−1. We start with all ki equal to 0 and always increase by one the ki
that minimizes τ ′(pi, q

ki+1) + li. Whenever the sum of all qki gets larger than
some value qk−1, we store the current maximum of τ ′(pi, qki) + li as the value
τ ′(vi, q

k). We terminate once
∑

i q
ki reaches 2n−2. It can be shown that such

approach calculates the same values of τ ′ as searching through ratios αi. As we
can increase each ki at most s times, we make at most ds steps, each of which
involves choosing a minimum from d values and replacing it with a new value.
The latter can be done in time O(log d) ⊆ O(log n), for instance by keeping the
values τ ′(vi, q

ki+1) + li in a heap. The sum of the d’s for all considered vertices
is equal to the number of edges m. The update of

∑
i q

ki , calculation of qk+1

from qk, and comparison with the maximum number of paths can all be done in
O(log(2n)) = O(n) time if we choose q in the form 1+2−t in order to be able to
implement multiplication by q by a sequence of bit-shifts and a single addition.
The resulting bit-time complexity is thus O(mn3ε−1 logn). ⊓⊔

We note that processing the dynamic programming table for all path numbers
in one go would to improve the time complexity of the original Knapsack FPTAS
[13] by a factor of O(log(n)).

2.1 Counting solutions of given lengths in multiple instances

In this section we consider the problem of counting solutions that are approximately-
optimum for two given instances at the same time. The two instances differ in
edge lengths, but share the same topology, effectively forming a bi-criteria in-
stance. Formally, given two directed acyclic graphs G1 and G2, differing only in
edge-weights, given two vertices s and t, and given two threshold values L1 and
L2, we are interested in the number of the s-t paths that have at the same time
length at most L1 in G1 and length at most L2 in G2.

To solve this algorithmic problem, we cannot directly apply the approach for
the single-instance case (by defining τ to be a pair of path lengths, one for each
of the two instances), as we now have two lengths per edge and it is unclear how
to suitably define a maximum over pairs in Equation (1). In fact, we can show
that we cannot construct a FPTAS for the two instance scenario, or indeed any
approximation algorithm.

Theorem 3. Let G1 and G2 be two directed acyclic graphs with the same sets of

vertices and edges, but possibly different edge-weights, let s and t be two vertices

in them, let L1 and L2 be two length thresholds. The existence of an algorithm

that in time polynomial in number of vertices n computes any finite approxima-

tion of the number of paths from s to t that are shorter than L1 if measured

in the graph G1 and shorter than L2 if measured in the graph G2, implies that

P = NP .

Proof. We show this by reducing the decision version of the knapsack problem
to the aforementioned problem. Let us have a knapsack instance with n items
with weights w1, . . . , wn and prices p1, . . . , pn. Given a total weight limit W and
a price limit P we want to know if we can select a set of items such that the
total weight is at most W and the total price is at least P . The corresponding
DAG will have n + 1 vertices v0, . . . , vn, with two edges between all successive
vertices vk and vk+1 that will correspond to the action of taking or not taking
the k + 1-st element into the knapsack. The first edge between vk and vk+1 will
have length wk+1 in the graph G1 and length 2P

n+1 − pk+1 in the graph G2, the
second edge will have length 0 in the graph G1 and 2P

n+1 in the graph G2. We can
now ask for the number of paths from v0 to vn that are shorter than W in the
graph G1 and shorter than P in the graph G2. If we had an algorithm that gives
us a number that differs from this number by any real and finite multiplicative
ratio c, we could determine whether the original knapsack problem had at least
one solution since the ratio between 1 and 0 is not a real number. ⊓⊔

This proof is perhaps surprising due to the fact that Gopalan et al. [7] showed
a FPTAS that counts the number of solutions of multi-criteria knapsack in-
stances. This shows that while knapsack is a special version of our problem, it
is in fact less complex due to the common assumption that the item values are
non-negative.

While we cannot obtain a (1 + ε)-approximation of the number of s-t paths
that have length at most L1 in the first instance, and at the same time length

at most L2 in the second instance, we will adopt the techniques for FPTAS in a
single instance, and show a polynomial-time algorithm that provides heuristics
for good estimates of s-t paths that have length at most (1 + δ)L1 in the first
instance, and at the same time length at most L2 in the second instance. We
will only consider the case where L1 is positive.

To do so, we define a function τ2 similar in spirit to τ that uses a maxi-
mum path-length L1 in the form of a “budget” as a parameter of τ2. Formally,
τ2(vi, a, L1) is the smallest length L2 such that there are at least a v1-vi paths,
each of length at most L1 with respect to the edge lengths in the first instance,
and of length at most L2 with respect to the edge length in the second instance.
Similarly to τ , we can express τ2 recursively using the following notation. Let
vi be a vertex of in-degree d, and let p1, . . . , pd be the neighbors of vi preced-
ing it in the topological order. The edge-length of the incoming edge (pj , vi),
j = 1, . . . , di, is lj in the first instance, and l′j in the second instance. Then, τ2
satisfies the following recursion:

τ2(v1, 0, x) = −∞, ∀x ∈ R
+

τ2(v1, a, x) = 0, ∀a : 0 < a ≤ 1, ∀x ∈ R
+

τ2(v1, a, x) = ∞, ∀a : a > 1, ∀x ∈ R
+

τ2(vi, a, L1) = min
α1,...,αd∑

αj=1

max
s

τ2(ps, αsa, L1 − ls) + l′s

If we wanted to use τ2 to directly use to solve our counting problem, the
function τ2 would have to be evaluated not only for an exponential number of
path counts a, but also for possibly exponential number of values of L1. To
end up with polynomial runtime, we thus need to consider only a polynomial
number of values for both parameters of τ2. For this purpose, we will introduce
a function τ ′2 that does this by considering only path lengths in the form of rk,
where r = n

√
1 + δ, and path numbers a in the form of qj , where q = n

√
1 + ε,

for positive ε and δ. Function τ ′2 is defined by the following recurrence:

τ ′2(v1, 0, x) = −∞, ∀x ∈ R
+

τ ′2(v1, a, x) = 0, ∀a : 0 < a ≤ 1, ∀x ∈ R
+

τ ′2(v1, a, x) = ∞, ∀a : a > 1, ∀x ∈ R
+

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max
s

τ ′2(ps, q
⌊j+logq αs⌋, r⌊logr(r

k−ls)⌋) + l′s

Similarly to the case of one instance only, one can show that τ ′2 approximates
τ2 well, this time in two variables.

Lemma 3. Let 0 ≤ i, i ≤ j, and i ≤ k. Then

τ2(vi, q
j−i, rk) ≤ τ ′2(vi, q

j , rk) ≤ τ2(vi, q
j, rk−i). (3)

Proof. We proceed as in the proof of Lemma 1. Note that the function τ2 is
monotone non-decreasing in a, but monotone non-increasing in L1. Proceeding
by induction on i, the base case holds since τ2(v1, a, y) ≤ τ ′2(v1, b, y) for any
a ≤ b and y. We suppose that Equation (3) holds for all p < i. Then, for every
0 ≤ α < 1,

τ ′2(p, q
⌊j+logq α⌋, r⌊logr(r

k−l)⌋)a ≥ τ2(p, q
⌊j+logq α⌋−p, r⌊logr(r

k−l)⌋)

≥ τ2(p, q
j−p−1+logq α, rk − l) ≥ τ2(p, αq

j−i, rk − l).

Thus, since every predecessor of vi has index smaller than i,

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max
s

τ ′2(ps, q
⌊j+logq αs⌋, r⌊logr(r

k−ls)⌋) + l′s

≥ min
α1,...,αd∑

αj=1

max
s

τ2(ps, αsq
j−i, rk − ls) + l′s = τ2(vi, q

j−i, rk).

The proof of the inequality τ ′2(vi, q
j , rk) ≤ τ2(vi, q

j, rk−i) is similar. Assuming
that (3) holds for every p < i, we obtain

τ ′2(p, q
⌊j+logq α⌋, r⌊logr(r

k−l)⌋) ≤ τ2(p, q
⌊j+logq α⌋, r⌊logr(r

k−l)⌋−p)

≤ τ2(p, αq
j , rlogr(r

k−l)−p−1) ≤ τ2(p, αq
j , rk−i − l).

Plugging it into the definition of τ ′2, we obtain

τ ′2(vi, q
j , rk) = min

α1,...,αd∑
αj=1

max
s

τ ′2(ps, q
⌊j+logq αs⌋, r⌊logr(r

k−ls)⌋) + l′s

≤ min
α1,...,αd∑

αj=1

max
s

τ2(ps, αsq
j , rk−i − ls) + l′s = τ2(vi, q

j , rk−i).

⊓⊔

Using Lemma 3, we can show that τ ′2 provides enough information to compute
an approximation of τ2. However, we cannot get a (1 + ε) approximation to the
optimal value as in Lemma 2, because we need to round the value of L1 to a
power of r in order for it to be legal parameter of τ ′2 and we further round it
during the evaluation of τ ′2. We will therefore relate the result of τ ′2 to the results
of τ2 we would have gotten if we considered the value of L1 when rounded up
towards the nearest number that can be represented as rk for integer k and the
value rk−n. Due to the choice of r, the ratio of these two values is 1 + δ.

Lemma 4. Let k be such that τ ′2(vn, q
k, r⌈logr L1⌉) ≤ L2 < τ ′2(vn, q

k+1, r⌈logr L1⌉),
a be such that τ2(vn, a, r

⌈logr L1⌉−n) ≤ L2 < τ2(vn, a + 1, r⌈logr L1⌉−n), and b be

largest such that τ2(vn, b, r
⌈logr L1⌉) ≤ L2 < τ2(vn, b + 1, r⌈logr L1⌉). Then a ≤ b,

a
qk

≤ 1 + ε, and qk

b ≤ 1 + ε.

Proof. The statement that a ≤ b follows from the definition of a and b: decreasing
the limit on the path length in the first instance from r⌈logr L1⌉ to r⌈logr L1⌉−n

cannot increase the number of possible paths. By applying Lemma 3 twice, we
get

τ2(vn, q
k−n, r⌈logr L1⌉) ≤ τ ′2(vn, q

k, r⌈logr L1⌉) ≤ L2, (4)

and
L2 < τ ′2(vn, q

k+1, r⌈logr L1⌉) ≤ τ2(vn, q
k+1, r⌈logr L1⌉−n). (5)

From the definition of a and (5) we can conclude a ≤ qk+1. This implies that
a
qk ≤ q ≤ 1+ ε, due to our choice of q. Similarly, from the definition of b and (4)

we get b ≥ qk−n and thus qk

b ≤ qn ≤ 1 + ε. ⊓⊔

Lemma 4 shows that the computed number of s-t paths qk cannot be larger
than b by more than a factor of 1 + ε, nor can it be smaller than a by a factor
larger than 1 + ε. Furthemore, with the aforementioned choice of r as n

√
1 + δ,

the difference between the rounded up value of L1 which is r⌈logr L1⌉ and the
rounded down value which is r⌈logr L1⌉−n is (1+ δ). We can now state the overall
running time of the approach. Compared to the function τ ′ we need to evaluate
τ ′2 for ⌈logr L1⌉ = O(nδ−1 logL1) values of rl, in addition to the values of vi
and qk. Otherwise the arguments are identical to the proof of Theorem 2. Note
that logL1 is by definition in O(n), but we list it explicitly since it can be much
smaller in practice.

Lemma 5. Given path-lengths L1 and L2 for two given instances G1 and G2 of

a graph with n edges and m vertices, there is an algorithm that finds k satisfying

τ ′2(vn, q
k, r⌈logr L1⌉) ≤ L < τ ′2(vn, q

k+1, r⌈logr L1⌉) in time O(mn3ε−1δ−1 logn logL1).

Putting together Lemma 4 and Lemma 5 we can state the overall result:

Theorem 4. For any L1, L2, any edge-weighted directed acyclic graphs on the

same topology G1 and G2, and any two of their vertices s, t, there exists a length

L′
2 satisfying (1+ δ)−1L2 ≤ L′

2 ≤ L2 and an FPTAS for counting the number of

paths from s to t no longer than L1 when evaluated on the graph G1 and no longer

than L′
2 when evaluated on the graph G2 in the time O(mn4ε−1δ−1 logn logL1).

It is easy to see that we can extend the approach to count paths that ap-
proximate m instances at the same time by adding “budgets” L1, . . . , Lm−1 for
the desired maximal lengths of paths in instances 1, 2, . . . ,m− 1. The time com-
plexity would again increase, for every additional instance with threshold Li by
O(nδ−1 logLi).

Pseudo-polynomial algorithm for two instances. If the discrepancy between a

and b as defined in Lemma 4 is too large and all edges have integer lengths,
we can consider all possible lengths in the first instance, instead of rounding to
values in the form of rk.

The function τ ′′2 will be τ ′ extended with the budget representing the exact
maximum length of a path in the first instance.

τ ′′2 (v1, 0, x) = −∞, ∀x ∈ R
+

τ ′′2 (v1, a, x) = 0, ∀a : 0 < a ≤ 1, ∀x ∈ R
+

τ ′′2 (v1, a, x) = ∞, ∀a : a > 1, ∀x ∈ R
+

τ ′′2 (vi, q
j , rk) = min

α1,...,αd∑
αj=1

max
s

τ ′′2 (ps, q
⌊j+logq αs⌋, L− ls) + l′s

We will state the lemma and theorem about accuracy and runtime without
proofs, since these are similar to the proofs of Lemma 2 and Theorem 2. Notice
that the algorithm evaluating τ ′′2 is pseudo-polynomial.

Lemma 6. Given L, let k be such that τ ′′2 (vn, q
k, L1) ≤ L2 < τ ′′2 (vn, q

k+1, L1)
and a be such that τ2(vn, a, L1) ≤ L2 < τ2(vn, a+1, L1). Then (1+ ε)−1 ≤ a

qk
≤

1 + ε.

Theorem 5. Given two graphs with integer weights, and any ε > 0, there is an

algorithm that computes a (1+ε)-approximation for the number of s-t paths that

have length at most L1 in the first instance, and length at most L2 in the second

instance, and runs in time O(mn3ε−1L1 logn), where m denotes the number of

edges in the graph.

3 Concluding Remarks

We have shown that there is an efficient algorithm to approximate the number
of approximately shortest paths in a directed acyclic graph. This problem is
implicitly or explicitly present as an algorithmic tool in algorithmic solutions to
a large number of different computational problems, not limited to the evaluation
of solutions achieved by dynamic programming which we noted in Section 1.1.

Our result allows us, for instance, to approximately count only the small
(or large) terms of a polynomial p(x) =

∑
i aix

i, ai ≥ 0, represented as a
product

∏
j pj(x) of polynomially many polynomial factors pj(x), where each

pj(x) =
∑

k bkx
k has polynomially many terms, and where every bk ≥ 0. This

is especially interesting if the full expansion of p(x) has exponentially many
terms. This may be a powerful tool, if extended to the case of both negative and
positive bk, enabling the counting of approximate solutions for problems with
known generating polynomials of solutions by weight. For instance, counting of
large graph matchings [8] or short spanning trees [1] can be done via generating
polynomials (which, in general, have exponentially many terms). This direction
is our primary future work.

We have also showed that our algorithm can be extended, given threshold
weights L1, . . . , Lm, and polynomially many graphs G1, . . . , Gm, to count s-t
paths that have, at the same time, length at most L1 in G1 and at most (1+δ)Li

in Gi, i = 2, . . . ,m. In the case when m = 2, this algorithm is necessary for
application of the aforementioned robust optimization method [2] to the various
mentioned optimization problems.

Acknowledgements. We thank Octavian Ganea and anonymous reviewers for
their suggestions and comments. The work has been partially supported by the
Swiss National Science Foundation under grant no. 200021_138117/1, and by
the EU FP7/2007-2013, under the grant agreement no. 288094 (project eCOM-
PASS).

References

1. Broder, A.Z., Mayr, E.W.: Counting minimum weight spanning trees. J. Algo-
rithms 24, 171–176 (July 1997)

2. Buhmann, J.M., Mihalák, M., Šrámek, R., Widmayer, P.: Robust optimization in
the presence of uncertainty. In: Proc. 4th Conference on Innovations in Theoretical
Computer Sciencei (ITCS). pp. 505–514. ACM, New York, NY, USA (2013)

3. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic
DNA. Journal of molecular biology 268(1), 78–94 (1997)

4. Chen, T., Kao, M.Y., Tepel, M., Rush, J., Church, G.M.: A dynamic programming
approach to de novo peptide sequencing via tandem mass spectrometry. Journal
of Computational Biology 8(3), 325–337 (2001)

5. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press
(1998)

6. Dyer, M., Frieze, A., Kannan, R., Kapoor, A., Perkovic, L., Vazirani, U.: A mildly
exponential time algorithm for approximating the number of solutions to a multi-
dimensional knapsack problem. Combinatorics, Probability and Computing 2(3),
271–284 (1993)

7. Gopalan, P., Klivans, A., Meka, R., Štefankovič, D., Vempala, S., Vigoda, E.:
An FPTAS for # knapsack and related counting problems. In: Proc. 52nd An-
nual IEEE Symposium on Foundations of Computer Science (FOCS). pp. 817–826
(2011)

8. Jerrum, M.: Two-dimensional monomer-dimer systems are computationally in-
tractable. Journal of Statistical Physics 48(1-2), 121–134 (1987)

9. Karp, R.M.: Reducibility among combinatorial problems. Springer (1972)
10. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration,

and Search (1998)
11. Lu, B., Chen, T.: A suboptimal algorithm for de novo peptide sequencing via

tandem mass spectrometry. Journal of Computational Biology 10(1), 1–12 (2003)
12. Naor, D., Brutlag, D.: On suboptimal alignments of biological sequences. In: Proc.

4th Annual Symposium on Combinatorial Pattern Matching (CPM). pp. 179–196.
Springer (1993)

13. Štefankovič, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time ap-
proximation scheme for counting knapsack solutions. SIAM Journal on Computing
41(2), 356–366 (2012)

14. Valiant, L.G.: The complexity of computing the permanent. Theoretical computer
science 8(2), 189–201 (1979)

15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

	Counting approximately-shortest paths in directed acyclic graphs

