Abstract
The Minimum Vertex Cover (MVC) problem is an important NP-hard combinatorial optimization problem. Constraint weighting is an effective technique in stochastic local search algorithms for the MVC problem. The edge weight and the vertex weight have been used separately by different algorithms. We present a new local search algorithm, namely VEWLS, which integrates the edge weighting scheme with the vertex weighting scheme. To the best of our knowledge, it is the first time to combine two weighting schemes for the MVC problem. Experiments over both the DIMACS benchmark and the BHOSLIB benchmark show that VEWLS outperforms NuMVC, the state-of-the-art local search algorithm for MVC, on 73% and 68% of the instances, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)
Cai, S., Su, K., Chen, Q.: EWLS: A New Local Search for Minimum Vertex Cover. Proc. of AAAI-2010, pp. 45–50 (2010)
Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 175(9-10), 1672–1696 (2011)
Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover. J. Artif. Intell. Res., 687–716 (2013)
Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. of Math. 162(1) (2005)
Evans, I.: An evolutionary heuristic for the minimum vertex cover problem. In: Proc. of EP 1998, pp. 377–386 (1998)
Gomes, C., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Randomization. In: Proc. of AAAI 1998, pp. 431–438 (1998)
Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 233–248. Springer, Heidelberg (2002)
Khot, S.: On the power of unique 2-Prover 1-Round games. In: Proc. 34th ACM Symp. on Theory of Computing, STOC, pp. 767–775 (May 2002)
Li, C., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In: Proc. of AAAI 2010, pp. 128–133 (2010)
Li, C., Fang, Z., Xu, K.: Combining maxsat reasoning and incremental upper bound for the maximum clique problem. In: Proc. of ICTAI 2013, pp. 939–946 (2013)
Morris, P.: The breakout method for escaping from local minima. In: Proc. of AAAI 1993, pp. 40–45 (1993)
Ostergard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120, 197–207 (2002)
Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif. Intell. Res (JAIR), 159–185 (2006)
Pullan, W.: Phased local search for the maximum clique problem. J. Comb. Optim 12(3), 303–323 (2006)
Pullan, W.: Optimisation of unweighted/weighted maximum independent sets and minimum vertex covers. Discrete Optimization 6, 214–219 (2009)
Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex cover. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 412–426. Springer, Heidelberg (2007)
Thornton, J.: Clause weighting local search for sat. J. Autom.Reasoning 35(1-3), 97–142 (2005)
Tomita, E., Kameda, T.: An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments. Journal of Global Optimization 37, 95–111 (2007)
Tomita, E., Seki, T.: An Efficient Branch-and-Bound Algorithm for Finding a Maximum Clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)
Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res (JAIR) 12, 93–103 (2000)
Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: Easy generation of hard (satisfiable) instances. Artif. Intell. 171(8-9), 514–534 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fang, Z., Chu, Y., Qiao, K., Feng, X., Xu, K. (2014). Combining Edge Weight and Vertex Weight for Minimum Vertex Cover Problem. In: Chen, J., Hopcroft, J.E., Wang, J. (eds) Frontiers in Algorithmics. FAW 2014. Lecture Notes in Computer Science, vol 8497. Springer, Cham. https://doi.org/10.1007/978-3-319-08016-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-08016-1_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08015-4
Online ISBN: 978-3-319-08016-1
eBook Packages: Computer ScienceComputer Science (R0)