Abstract
Let G = (V, E) be a given (directed) graph in which every edge is with a cost and a delay that are nonnegative. The k-disjoint restricted shortest path (kRSP) problem is to compute k (edge) disjoint minimum cost paths between two distinct vertices s, t ∈ V, such that the total delay of these paths are bounded by a given delay constraint \(D\in\mathbb{R}_{0}^{+}\). This problem is known to be NP-hard, even when k = 1 [4]. Approximation algorithms with bifactor ratio \((1+\frac{1}{r},\, r(1+\frac{2(\log r+1)}{r})(1+\epsilon))\) and \((1+\frac{1}{r},\, r(1+\frac{2(\log r+1)}{r}))\) have been developed for its special case when k = 2 respectively in [11] and [3]. For general k, an approximation algorithm with ratio (1, O(ln n)) has been developed for a weaker version of kRSP, the k bi-constraint path problem of computing k disjoint st-paths to satisfy the given cost constraint and delay constraint simultaneously [7].
In this paper, an approximation algorithm with bifactor ratio (2, 2) is first given for the kRSP problem. Then it is improved such that for any resulted solution, there exists a real number 0 ≤ α ≤ 2 that the delay and the cost of the solution is bounded, respectively, by α times and 2 − α times of that of an optimal solution. These two algorithms are both based on rounding a basic optimal solution of a LP formula, which is a relaxation of an integral linear programming (ILP) formula for the kRSP problem. The key observation of the two ratio proofs is to show that, the fractional edges of a basic solution to the LP formula will compose a graph in which the degree of every vertex is exactly 2. To the best of our knowledge, it is the first algorithm with a single factor polylogarithmic ratio for the kRSP problem.
This research was supported by Natural Science Foundation of China (#61300025), Doctoral Funds of Ministry of Education of China for Young Scholars (#20123514120013), Natural Science Foundation of Fujian Province (#2012J05115), and Fuzhou University Development Fund (2012-XQ-26).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications (1993)
Bhatia, R., Kodialam, M.: TV Lakshman. Finding disjoint paths with related path costs. Journal of Combinatorial Optimization 12(1), 83–96 (2006)
Chao, P., Hong, S.: A new approximation algorithm for computing 2-restricted disjoint paths. IEICE Transactions on Information and Systems 90(2), 465–472 (2007)
Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, San Francisco (1979)
Guo, L., Shen, H.: On the complexity of the edge-disjoint min-min problem in planar digraphs. Theoretical Computer Science 432, 58–63 (2012)
Guo, L., Shen, H.: On finding min-min disjoint paths. Algorithmica 66(3), 641–653 (2013)
Guo, L., Shen, H., Liao, K.: Improved approximation algorithms for computing k disjoint paths subject to two constraints. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 325–336. Springer, Heidelberg (2013)
Li, C.L., McCormick, T.S., Simich-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Applied Mathematics 26(1), 105–115 (1989)
Lorenz, D.H., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Operations Research Letters 28(5), 213–219 (2001)
Misra, S., Xue, G., Yang, D.: Polynomial time approximations for multi-path routing with bandwidth and delay constraints. In: INFOCOM 2009, pp. 558–566. IEEE (2009)
Orda, A., Sprintson, A.: Efficient algorithms for computing disjoint QoS paths. In: INFOCOM 2004, vol. 1, pp. 727–738. IEEE (2004)
Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons Inc. (1998)
Suurballe, J.W.: Disjoint paths in a network. Networks 4(2) (1974)
Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14(2) (1984)
Xu, D., Chen, Y., Xiong, Y., Qiao, C., He, X.: On the complexity of and algorithms for finding the shortest path with a disjoint counterpart. IEEE/ACM Transactions on Networking 14(1), 147–158 (2006)
Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial time approximation algorithms for multi-constrained qos routing. IEEE/ACM Transactions on Networking 16(3), 656–669 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Guo, L. (2014). Improved LP-rounding Approximations for the k-Disjoint Restricted Shortest Paths Problem. In: Chen, J., Hopcroft, J.E., Wang, J. (eds) Frontiers in Algorithmics. FAW 2014. Lecture Notes in Computer Science, vol 8497. Springer, Cham. https://doi.org/10.1007/978-3-319-08016-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-08016-1_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08015-4
Online ISBN: 978-3-319-08016-1
eBook Packages: Computer ScienceComputer Science (R0)