Abstract
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value for each vertex v of the graph, find a minimum size vertex-subset to “activate” s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex v is activated during the propagation process if at least
of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions f and ρ this problem cannot be approximated within a factor of ρ(k) in f(k) ·n
O(1) time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimization versions of the problem for which we prove similar hardness results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aazami, A., Stilp, K.: Approximation algorithms and hardness for domination with propagation. SIAM J. Discrete Math. 23(3), 1382–1399 (2009)
Arora, S., Lund, C.: Hardness of approximations. In: Approximation Algorithms for NP-Hard Problems, pp. 399–446. PWS Publishing Company (1996)
Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 543–554. Springer, Heidelberg (2013)
Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)
Cai, L., Huang, X.: Fixed-parameter approximation: Conceptual framework and approximability results. Algorithmica 57(2), 398–412 (2010)
Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27-29), 2714–2724 (2009)
Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)
Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120. Springer, Heidelberg (2006)
Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)
Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)
Dinur, I., Safra, S.: The importance of being biased. In: Proc. of STOC 2002, pp. 33–42. ACM (2002)
Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 121–129. Springer, Heidelberg (2006)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)
Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157(7), 1615–1627 (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proc. of KDD 2003, pp. 137–146. ACM (2003)
Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)
Marx, D.: Completely inapproximable monotone and antimonotone parameterized problems. J. Comput. Syst. Sci. 79(1), 144–151 (2013)
Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Network Anal. Mining 3(2), 233–256 (1869) ISSN 1869-5450
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282(2), 231–257 (2002)
Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F. (2014). Parameterized Inapproximability of Target Set Selection and Generalizations. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-08019-2_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08018-5
Online ISBN: 978-3-319-08019-2
eBook Packages: Computer ScienceComputer Science (R0)