Skip to main content

Drug Target Identification Based on Structural Output Controllability of Complex Networks

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

  • 2379 Accesses

Abstract

Identifying drug target is one of the most important tasks in systems biology. In this paper, we develop a method to identify drug targets in biomolecular networks based on the structural output controllability of complex networks. The drug target identification has been formulated as a problem of finding steering nodes in networks. By applying control signals to these nodes, the biomolecular networks can be transited from one state to another. According to the control theory, a graph-theoretic algorithm has been proposed to find a minimum set of steering nodes in biomolecular networks which can be a potential set of drug targets. An illustrative example shows how the proposed method works. Application results of the method to real metabolic networks are supported by existing research results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lindsay, M.A.: Target discovery. Nat. Rev. Drug. Discov. 2, 831–838 (2003)

    Article  Google Scholar 

  2. Csermely, P., Agoston, V., Pongor, S.: The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005)

    Article  Google Scholar 

  3. Yang, K., Bai, H., Ouyang, Q., Lai, L., Tang, C.: Finding multiple target optimal intervention in diseaserelated molecular network. Molecular Systems Biology 4, 228 (2008)

    Article  Google Scholar 

  4. Azmi, A.S., Wang, Z., Philip, P.A., Mohammad, R.M., Sarkar, F.H.: Proof of concept: Network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 9(12), 3137–3144 (2010)

    Article  Google Scholar 

  5. Kotlyar, M., Fortney, K., Jurisica, I.: Network-based characterization of drug-regulated genes, drug targets, and toxicity. Methods 57, 499–507 (2012)

    Article  Google Scholar 

  6. Barabási, A., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nature Reviews Genetics 12, 55–68 (2011)

    Article  Google Scholar 

  7. Chen, L., Wang, R., Zhang, X.: Biomolecular Networks: Methods and Applications in Systems Biology. Wiley (2009)

    Google Scholar 

  8. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43(8), 691–698 (2006)

    Article  Google Scholar 

  9. van den Akker, E.B., Verbruggen, B., Heijmans, B., Beekman, M., Kok, J., Slagboom, P., Reinders, M.J.: Integrating protein-protein interaction networks with gene-gene co-expression networks improves gene signatures for classifying breast cancer metastasis. J. Integr. Bioinform. 8(2), 188 (2011)

    Google Scholar 

  10. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6(1) (2010)

    Google Scholar 

  11. Hwang, W.C., Zhang, A., Ramanathan, M.: Identification of information flow-modulating drug targets: A novel bridging paradigm for drug discovery. Clinical Pharmacology & Therapeutics 84, 563–572 (2008)

    Article  Google Scholar 

  12. Li, Z., Wang, R.-S., Zhang, X.-S.: Two-stage flux balance analysis of metabolic networks for drug target identification. BMC Systems Biology 5(suppl. 1), 11 (2011)

    Article  Google Scholar 

  13. Li, Z., Wang, R.S., Zhang, X.S., Chen, L.: Detecting drug targets with minimum side effects in metabolic networks. IET Syst. Biol. 3(6), 523–533 (2009)

    Article  Google Scholar 

  14. Wu, Z., Zhao, X.M., Chen, L.: A systems biology approach to identify effective cocktail drugs. BMC Systems Biology 4(suppl. 2), 57 (2010)

    Google Scholar 

  15. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 2223 (2013)

    Google Scholar 

  16. Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013)

    Article  Google Scholar 

  17. Lin, C.: Structural controllability. IEEE Trans. Auto. Contr. AC-19, 201–208 (1974)

    Google Scholar 

  18. Liu, Y., Slotine, J., Barabási, A.: Controllability of complex networks. Nature 473, 167–173 (2011)

    Article  Google Scholar 

  19. Hosoe, S.: Determination of generic dimensions of controllable subspaces and its application. IEEE Trans. Auto. Contr. AC-25, 1192–1196 (1980)

    Google Scholar 

  20. Murota, K., Poljak, S.: Note on a graph-theoretic criterion for structural output controllability. IEEE Trans. Auto. Contr. AC-35, 939–942 (1990)

    Article  MathSciNet  Google Scholar 

  21. Slotine, J., Li, W.: Applied Nonlinear Control. Prentice-Hall (1991)

    Google Scholar 

  22. Nise, N.: Control System Engineering, 6th edn. Wiley (2011)

    Google Scholar 

  23. Kalman, R.: Mathematical description of linear dynamical systems. J.S.I.A.M Control Ser. A 1, 152–192 (1962)

    MathSciNet  Google Scholar 

  24. Ogata, K.: Modern Control Engineering, 3rd edn. Prentice-Hall (1997)

    Google Scholar 

  25. Wu, F.X., Wu, L., Wang, J., Liu, J., Chen, L.: Transittability of complex networks and its applications to regulatory biomolecular networks. Sci. Rep. (accepted)

    Google Scholar 

  26. Jungnickel, D.: Graphs, Networks and Algorithms, 3rd edn. Springer (2005)

    Google Scholar 

  27. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Control centrality and hierarchical structure in complex networks. PLoS ONE 7(9), e44459 (2012)

    Google Scholar 

  28. Cowan, N.J., Chastain, E.J., Vilhena, D.A., Freudenberg, J.S., Bergstrom, C.T.: Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PLoS ONE 7(6), e38398 (2012)

    Google Scholar 

  29. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  30. Sridhar, P., Song, B., Kahveci, T., Ranka, S.: Mining metabolic network for optimal drug targets. In: Pac. Symp. Biocomput., vol. 13, pp. 291–302 (2008)

    Google Scholar 

  31. Rao, N.L., Dunford, P.J., Xue, X., Jiang, X., Lundeen, K.A., Coles, F., Riley, J.P., Williams, K.N., Grice, C.A., Edwards, J.P., Karlsson, L., Fourie, A.M.: Anti-inflammatory activity of a potent, selective leukotriene a4 hydrolase inhibitor in comparison with the 5-lipoxygenase inhibitor zileuton. J. Pharmacol. Exp. Ther. 321(3), 1154–1160 (2007)

    Article  Google Scholar 

  32. Torres-Galván, M.J., Ortega, N., Sánchez-García, F., Blanco, C., Carrillo, T., Quiralte, J.: Ltc4-synthase a-444c polymorphism: lack of association with nsaid-induced isolated periorbital angioedema in a Spanish population. Ann. Allergy Asthma Immunol. 87(6), 506–510 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, L., Shen, Y., Li, M., Wu, FX. (2014). Drug Target Identification Based on Structural Output Controllability of Complex Networks. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics