Skip to main content

Identification of Essential Proteins by Using Complexes and Interaction Network

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

Abstract

Essential proteins are indispensable in maintaining the cellular life. Identification of essential proteins can provide basis for drug target design, disease treatment as well as synthetic biology minimal genome. However, it is still time-consuming and expensive to identify essential protein based on experimental approaches. With the development of high-throughput experimental techniques in the post-genome era, a large number of PPI data and gene expression data can be obtained, which provide an unprecedented opportunity to study essential proteins at the network level. So far, many network topological methods have been proposed to identify the essential proteins. In this paper, we propose a new method, United complex Centrality(UC), to identify essential proteins by integrating protein complexes information and topological features of PPI network. By analysis of the relationship between protein complexes and essential proteins, we find that proteins appeared in multiple complexes are more inclined to be essential compared to these only appeared in a single complex. The experiment results show that protein complex information can help identify the essential proteins more accurate. Our method UC is obviously better than traditional centrality methods(DC, IC, EC, SC, BC, CC, NC) for identifying essential proteins. In addition, even compared with Harmonic Centricity which also used protein complexes information, it still has a great advantage.

This work is supported in part by the National Natural Science Foundation of China under Grant No.61370024, No.61232001, and No.61379108, the Program for New Century Excellent Talents in University (NCET-12-0547).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pál, C., Papp, B., Hurst, L.D.: Genomic function (communication arising): rate of evolution and gene dispensability. Nature 421(6922), 496–497 (2003)

    Article  Google Scholar 

  2. Zhang, J., He, X.: Significant impact of protein dispensability on the instantaneous rate of protein evolution. Molecular Biology and Evolution 22(4), 1147–1155 (2005)

    Article  Google Scholar 

  3. Liao, B.Y., Scott, N.M., Zhang, J.: Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Molecular Biology and Evolution 23(11), 2072–2080 (2006)

    Article  Google Scholar 

  4. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429), 901–906 (1999)

    Article  Google Scholar 

  5. Kamath, R.S., Fraser, A.G., Dong, Y., et al.: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920), 231–237 (2003)

    Article  Google Scholar 

  6. Kondrashov, F.A., Ogurtsov, A.Y., Kondrashov, A.S.: Bioinformatical assay of human gene morbidity. Nucleic Acids Research 32(5), 1731–1737 (2004)

    Article  Google Scholar 

  7. Furney, S.J., Albá, M.M., López-Bigas, N.: Differences in the evolutionary history of disease genes affected by dominant or recessive mutations. BMC Genomics 7(1), 165 (2006)

    Article  Google Scholar 

  8. Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., et al.: Evolutionary rate in the protein interaction network. Science 296(5568), 750–752 (2002)

    Article  Google Scholar 

  9. Xu, J., Li, Y.: Discovering disease-genes by topological features in human protein - protein interaction network. Bioinformatics 22(22), 2800–2805 (2006)

    Article  Google Scholar 

  10. Park, D., Park, J., Park, S.G., et al.: Analysis of human disease genes in the context of gene essentiality. Genomics 92(6), 414–418 (2008)

    Article  Google Scholar 

  11. Jeong, H., Mason, S.P., Barabási, A.L., et al.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  12. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6(1), 35–40 (2006)

    Article  MathSciNet  Google Scholar 

  13. He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS Genetics 2(6), e88 (2006)

    Google Scholar 

  14. Zotenko, E., Mestre, J., O’Leary, D.P., et al.: Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Computational Biology 4(8), e1000140 (2008)

    Google Scholar 

  15. Chua, H.N., Tew, K.L., Li, X.L., et al.: A unified scoring scheme for detecting essential proteins in protein interaction networks. In: 20th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2008, vol. 2, pp. 66–73. IEEE (2008)

    Google Scholar 

  16. Batada, N.N., Hurst, L.D., Tyers, M.: Evolutionary and physiological importance of hub proteins. PLoS Computational Biology 2(7), e88 (2006)

    Google Scholar 

  17. Seo, C.H., Kim, J.R., Kim, M.S., et al.: Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 25(15), 1898–1904 (2009)

    Article  Google Scholar 

  18. Acencio, M.L., Lemke, N.: Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics 10(1), 290 (2009)

    Article  Google Scholar 

  19. Vallabhajosyula, R.R., Chakravarti, D., Lutfeali, S., et al.: Identifying hubs in protein interaction networks. PLoS One 4(4), e5344 (2009)

    Google Scholar 

  20. Pang, K., Sheng, H., Ma, X.: Understanding gene essentiality by finely characterizing hubs in the yeast protein interaction network. Biochemical and Biophysical Research Communications 401(1), 112–116 (2010)

    Article  Google Scholar 

  21. Ning, K., Ng, H.K., Srihari, S., et al.: Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics 11(1), 505 (2010)

    Article  Google Scholar 

  22. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, 35–41 (1977)

    Google Scholar 

  23. Joy, M.P., Brock, A., Ingber, D.E., et al.: High-betweenness proteins in the yeast protein interaction network. BioMed Research International 2005(2), 96–103 (2005)

    Google Scholar 

  24. Wuchty, S., Stadler, P.F.: Centers of complex networks. Journal of Theoretical Biology 223(1), 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  25. Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Physical Review E 71(5), 056103 (2005)

    Google Scholar 

  26. Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology, 1170–1182 (1987)

    Google Scholar 

  27. Stephenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social Networks 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  28. Wang, H., Li, M., Wang, J., Pan, Y.: A new method for identifying essential proteins based on edge clustering coefficient. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS (LNBI), vol. 6674, pp. 87–98. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Li, M., Wang, J., Chen, X., et al.: A local average connectivity-based method for identifying essential proteins from the network level. Computational Biology and Chemistry 35(3), 143–150 (2011)

    Article  MathSciNet  Google Scholar 

  30. Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2014)

    Google Scholar 

  31. Li, M., Zheng, R., Zhang, H., Wang, J., Pan, Y.: Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods (2014)

    Google Scholar 

  32. Kim, W.: Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods. Tsinghua Science and Technology 17(6), 645–658 (2012)

    Google Scholar 

  33. Sprinzak, E., Sattath, S., Margalit, H.: How reliable are experimental protein - protein interaction data? Journal of Molecular Biology 327(5), 919–923 (2003)

    Article  Google Scholar 

  34. Hart, G.T., Lee, I., Marcotte, E.M.: A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8(1), 236 (2007)

    Article  Google Scholar 

  35. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences 100(21), 12128–12128 (2003)

    Google Scholar 

  36. Mewes, H.W., Amid, C., Arnold, R., et al.: MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research 32(suppl. 1), D41–D44 (2004)

    Google Scholar 

  37. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28(1), 289–291 (2000)

    Article  Google Scholar 

  38. Gavin, A.C., Aloy, P., Grandi, P., et al.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  39. Krogan, N.J., Cagney, G., Yu, H., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  40. Ho, Y., Gruhler, A., Heilbut, A., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    Article  Google Scholar 

  41. Issel-Tarver, L., Christie, K.R., Dolinski, K., et al.: Saccharomyces Genome Database. Methods in Enzymology 350, 329 (2002)

    Article  Google Scholar 

  42. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Research 37(suppl. 1), D455–D458 (2009)

    Google Scholar 

  43. http://www-sequence.stanford.edu/group/yeast_deletion_project (Saccharomyces Genome Deletion Project)

  44. Li, M., Wang, J., Wang, H., Pan, Y.: Essential proteins discovery from weighted protein interaction networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 89–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  45. Ren, J., Wang, J., Li, M., Wang, H., Liu, B.: Prediction of essential proteins by integration of PPI network topology and protein complexes information. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS (LNAI), vol. 6674, pp. 12–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, M., Lu, Y., Niu, Z., Wu, FX., Pan, Y. (2014). Identification of Essential Proteins by Using Complexes and Interaction Network. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics