Skip to main content

An Eigendecomposition Method for Protein Structure Alignment

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8492))

Included in the following conference series:

Abstract

The alignment of two protein structures is a fundamental problem in structural bioinformatics. Their structural similarity carries with it the connotation of similar functional behavior that could be exploited in various applications. In this paper, we model a protein as a polygonal chain of α carbon residues in three dimension and investigate the application of an eigendecomposition method due to Umeyama to the protein structure alignment problem. This method allows us to reduce the structural alignment problem to an approximate weighted graph matching problem.

The paper introduces two new algorithms, EDAlign res and EDAlign sse , for pairwise protein structure alignment. E DAlign res identifies the best structural alignment of two equal length proteins by refining the correspondence obtained from eigendecomposition and to maximize similarity measure, TM-score, for the refined correspondence. EDAlign sse , on the other hand, does not require the input proteins to be of equal length. It works in three stages: (1) identifies a correspondence between secondary structure elements (i.e SSE-pairs); (2) identifies a correspondence between residues within SSE-pairs; (3) applies a rigid transformation to report structural alignment in space. The latter two steps are repeated until there is no further improvement in the alignment. We report the TM-score and cRMSD as measures of structural similarity. These new methods are able to report sequence and topology independent alignments, with similarity scores that are comparable to those of the state-of-the-art algorithms such as, TM align and SuperPose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, W., May, A., Brown, N., Aszódi, A.: Protein structure: geometry, topology and classification. Reports on Progress in Physics 64(4), 517–590 (2001)

    Article  MathSciNet  Google Scholar 

  2. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology 247(4), 536–540 (1995)

    Google Scholar 

  3. Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., Thornton, J.: CATH - a hierarchic classification of protein domain structures. Structure 5(8), 1093–1108 (1997)

    Article  Google Scholar 

  4. Holm, L., Sander, C.: Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Research 25(1), 231–234 (1997)

    Article  Google Scholar 

  5. Holm, L., Sander, C.: Protein Structure Comparison by Alignment of Distance Matrices. Journal of Molecular Biology 233(1), 123–138 (1993)

    Article  Google Scholar 

  6. Artymiuk, P.J., Spriggs, R.V., Willett, P.: Graph theoretic methods for the analysis of structural relationships in biological macromolecules: Research articles. J. Am. Soc. Inf. Sci. Technol. 56(5), 518–528 (2005)

    Article  Google Scholar 

  7. Nussinov, R., Wolfson, H.J.: Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. Proceedings of the National Academy of Sciences 88(23), 10495–10499 (1991)

    Article  Google Scholar 

  8. Wu, T.D., Hastie, T., Schmidler, S.C., Brutlag, D.L.: Regression analysis of multiple protein structures. In: RECOMB, pp. 276–284 (1998)

    Google Scholar 

  9. Shibberu, Y., Holder, A.: A spectral approach to protein structure alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 867–875 (2011)

    Article  Google Scholar 

  10. Andonov, R., Malod-Dognin, N., Yanev, N.: Maximum contact map overlap revisited. J. Comput. Biol. 18(1), 27–41 (2011)

    Article  MathSciNet  Google Scholar 

  11. Di Lena, P., Fariselli, P., Margara, L., Vassura, M., Casadio, R.: Fast overlapping of protein contact maps by alignment of eigenvectors. Bioinformatics 26(18), 2250–2258 (2010)

    Article  Google Scholar 

  12. Zhang, Y., Skolnick, J.: TM-align: A protein structure alignment algorithm based on TM-score. Nucleic Acids Research 33, 2302–2309 (2005)

    Article  Google Scholar 

  13. Taylor, W.R.: Protein structure comparison using iterated double dynamic programming. Protein Sci. 8(3), 654–665 (1999)

    Article  Google Scholar 

  14. Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. In: Proc. Fourth Int. Conf. on Intell. Sys. Mol. Biol., pp. 59–67. AAAI Press (1996)

    Google Scholar 

  15. Gerstein, M., Levitt, M.: Comprehensive assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Science 7(2), 445–456 (1998)

    Article  Google Scholar 

  16. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering 11(9), 739–747 (1998)

    Article  Google Scholar 

  17. Szustakowski, J.D., Weng, Z.: Protein structure alignment using a genetic algorithm. Proteins: Structure, Function, and Bioinformatics 38(4), 428–440 (2000)

    Article  Google Scholar 

  18. Taylor, W.R., Orengo, C.A.: Protein structure alignment. Journal of Molecular Biology 208(1), 1–22 (1989)

    Article  Google Scholar 

  19. Alexandrov, N.N., Takahashi, K., Go, N.: Common spatial arrangements of backbone fragments in homologous and non-homologous proteins. Journal of Molecular Biology 225(1), 5–9 (1992)

    Article  Google Scholar 

  20. Orengo, C.A., Taylor, W.R.: SSAP: Sequential structure alignment program for protein structure comparison. In: Doolittle, R.F. (ed.) Computer Methods for Macromolecular Sequence Analysis. Methods in Enzymology, vol. 266, pp. 617–635. Academic Press (1996)

    Google Scholar 

  21. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Research 31(13), 3370–3374 (2003)

    Article  Google Scholar 

  22. Godzik, A., Kolinski, A., Skolnick, J.: Topology fingerprint approach to the inverse protein folding problem. Journal of Molecular Biology 227(1), 227–238 (1992)

    Article  Google Scholar 

  23. Krasnogor, N., Pelta, D.A.: Measuring the similarity of protein structures by means of the universal similarity metric. Bioinformatics 20(7), 1015–1021 (2004)

    Article  Google Scholar 

  24. Rahmati, S., Glasgow, J.I.: Comparing protein contact maps via universal similarity metric: an improvement in the noise-tolerance. I. J. Computational Biology and Drug Design 2(2), 149–167 (2009)

    Article  Google Scholar 

  25. Hasegawa, H., Holm, L.: Advances and pitfalls of protein structural alignment. Current Opinion in Structural Biology 19(3), 341–348 (2009)

    Article  Google Scholar 

  26. Koehl, P.: Protein structure similarities. Current Opinion in Structural Biology 11(3), 348–353 (2001)

    Article  Google Scholar 

  27. Taylor, W.R.: Protein structure comparison using bipartite graph matching and its application to protein structure classification. Mol. Cell Proteomics, 334–339 (2002)

    Google Scholar 

  28. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  29. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial time. Proc. Natl. Acad. Sci. U. S. A. 101(33), 12201–12206 (2004)

    Article  Google Scholar 

  30. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins: Structure, Function, and Bioinformatics 57(4), 702–710 (2004)

    Article  Google Scholar 

  31. Wang, S., Ma, J., Peng, J., Xu, J.: Protein structure alignment beyond spatial proximity. Scientific Reports 3 (March 2013)

    Google Scholar 

  32. Li, S.C.: The difficulty of protein structure alignment under the RMSD. Algorithms for Molecular Biology 8, 1 (2013)

    Article  Google Scholar 

  33. Levitt, M., Gerstein, M.: A unified statistical framework for sequence comparison and structure comparison. Proceedings of the National Academy of Sciences 95(11), 5913–5920 (1998)

    Article  Google Scholar 

  34. Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26(7), 889–895 (2010)

    Article  Google Scholar 

  35. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  36. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    Article  Google Scholar 

  37. Joosten, R.P., te Beek, T.A.H., Krieger, E., Hekkelman, M.L., Hooft, R.W.W., Schneider, R., Sander, C., Vriend, G.: A series of PDB related databases for everyday needs (January 2011)

    Google Scholar 

  38. Mizuguchi, K., Go, N.: Comparison of spatial arrangements of secondary structural elements in proteins. Protein Engineering 8(4), 353–362 (1995)

    Article  Google Scholar 

  39. Abyzov, A., Ilyin, V.: A comprehensive analysis of non-sequential alignments between all protein structures. BMC Structural Biology 7(1), 1–20 (2007)

    Article  Google Scholar 

  40. Maiti, R., Domselaar, G.H.V., Zhang, H., Wishart, D.S.: SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Research 32(Web-Server-Issue), 590–594 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Panigrahi, S.C., Mukhopadhyay, A. (2014). An Eigendecomposition Method for Protein Structure Alignment. In: Basu, M., Pan, Y., Wang, J. (eds) Bioinformatics Research and Applications. ISBRA 2014. Lecture Notes in Computer Science(), vol 8492. Springer, Cham. https://doi.org/10.1007/978-3-319-08171-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08171-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08170-0

  • Online ISBN: 978-3-319-08171-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics