Synonyms
Definitions
Sonic interaction design is defined as the study and exploitation of sound as one of the principal channels conveying information, meaning, and aesthetic/emotional qualities in interactive contexts. This field lies at the intersection of interaction design and sound and music computing.
Introduction
In recent years, the availability of low-cost head-mounted displays has enhanced the interest toward immersive sound experiences. Investigations on 3D sound in the context of virtual reality (VR) are not a novel topic (Begault and Trejo 2000). In an interactive immersive experience, sound can direct the attention of the user and enhance the sense of presence (Hendrix and Barfield 1996; Nordahl and Nilsson 2014; Serafin and Serafin 2004) and the ability to move users by creating interactive time-varying experiences (Nordahl 2006). The auditory modality possesses unique features. Unlike its visual counterpart,...
References
Adrien, J.-M.: The missing link: modal synthesis. In: Representations of Musical Signals, pp. 269–298. MIT Press, London (1991)
Avanzini, F., Crosato, P.: Integrating physically based sound models in a multimodal rendering architecture. Comput. Anim. Virtual Worlds. 17(3-4), 411–419 (2006)
Avanzini, F., Serafin, S., Rocchesso, D.: Interactive simulation of rigid body interaction with friction-induced sound generation. IEEE Trans. Speech Audio Process. 13(5), 1073–1081 (2005)
Ballas, J.A.: Self-produced sound: tightly binding haptics and audio. In: International Workshop on Haptic and Audio Interaction Design, pp. 1–8. Springer, Seoul (2007)
Begault, D.R., Trejo, L.J.: 3-D Sound for Virtual Reality and Multimedia. AP Professional, University of Michigan (2000)
Cook, P.R.: Real Sound Synthesis for Interactive Applications. CRC Press, Boca Raton, Florida (2002)
De Sena, E., Hacihabiboglu, H., Cvetkovic, Z.: Scattering delay network: an interactive reverberator for computer games. In: Audio Engineering Society Conference: 41st International Conference: Audio for Games. Audio Engineering Society, London (2011)
Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M., West, J.: A beam tracing approach to acoustic modeling for interactive virtual environments. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 21–32. ACM, Orlando, Florida (1998)
Funkhouser, T., Tsingos, N., Jot, J.-M.: Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems. Presence and teleoperation, MIT Press, USA (2003)
Gaver, W.W.: What in the world do we hear?: An ecological approach to auditory event perception. Ecol. Psychol. 5(1), 1–29 (1993)
Geronazzo, M., Fantin, J., Sorato, G., Baldovino, G., Avanzini, F.: Acoustic selfies for extraction of external ear features in mobile audio augmented reality. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 23–26. ACM, Gothenburg (2016)
Gilkey, R.H., Weisenberger, J.M.: The sense of presence for the suddenly deafened adult: implications for virtual environments. Presence Teleop. Virt. 4(4), 357–363 (1995)
Hendrix, C., Barfield, W.: The sense of presence within auditory virtual environments. Presence Teleop. Virt. 5(3), 290–301 (1996)
Huopaniemi, J., Savioja, L., Takala, T.: Diva Virtual Audio Reality System. Georgia Institute of Technology, Atlanta (1996)
James, D.L., Barbiˇc, J., Pai, D.K.: Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 987–995. ACM, New York (2006)
Janer, J., G’omez, E., Martorell, A., Miron, M., de Wit, B.: Immersive orchestras: audio processing for orchestral music VR content. In: Games and Virtual Worlds for Serious Applications (VS-Games), 2016 8th International Conference on, pp. 1–2. IEEE, Barcelona (2016)
Katz, B.F., Postma, B.N., Poirier-Quinot, D., Meyer, J.: Experience with a virtual reality auralization of notre-dame cathedral. J. Acoust. Soc. Am. 141(5), 3454–3454 (2017)
Kendall, G.S.: A 3-d sound primer: directional hearing and stereo reproduction. Comput. Music J. 19(4), 23–46 (1995)
Kleiner, M., Dalenbäck, B.-I., Svensson, P.: Auralization-an overview. J. Audio Eng. Soc. 41(11), 861–875 (1993)
Larsson, P., Väljamäe, A., Västfjäll, D., Tajadura-Jim’enez, A., Kleiner, M.: Auditory-induced presence in mixed reality environments and related technology. In: The Engineering of Mixed Reality Systems, pp. 143–163. Springer, London (2010)
Mehra, R., Manocha, D.: Wave-based sound propagation for vr applications. In: VR Workshop: Sonic Interaction in Virtual Environments (SIVE), 2014 IEEE, pp. 41–46. IEEE, Minneapolis, Minnesota (2014)
Mehra, R., Raghuvanshi, N., Antani, L., Chandak, A., Curtis, S., Manocha, D.: Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. (TOG). 32(2), 19 (2013.) Sonic Interactions in Virtual Environments 9
Mehra, R., Antani, L., Kim, S., Manocha, D.: Source and listener directivity for interactive wave-based sound propagation. IEEE Trans. Visual. Comput. Graph. 20(4), 495–503 (2014)
Mehra, R., Rungta, A., Golas, A., Lin, M., Manocha, D.: Wave: interactive wave-based sound propagation for virtual environments. IEEE Trans. Visual. Comput. Graph. 21(4), 434–442 (2015)
Meshram, A., Mehra, R., Yang, H., Dunn, E., Franm, J.-M., Manocha, D.: P-hrtf: efficient personalized hrtf computation for high-fidelity spatial sound. In: Mixed and Augmented Reality (ISMAR), 2014 I.E. International Symposium on, pp. 53–61. IEEE, Munich (2014)
Morrison, J.D., Adrien, J.-M.: Mosaic: a framework for modal synthesis. Comput. Music J. 17(1), 45–56 (1993)
Nordahl, R.: Increasing the motion of users in photo-realistic virtual environments by utilizing auditory rendering of the environment and ego-motion. In: PRESENCE 2006: The 8th Annual International Workshop on Presence, pp. 57–63. (2006)
Nordahl, R., Nilsson, N.C.: The sound of being there: presence and interactive audio in immersive virtual reality. In: Oxford Handbook of Interactive Audio. Oxford University Press, UK (2014)
O’Brien, J.F., Shen, C., Gatchalian, C.M.: Synthesizing sounds from rigid-body simulations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 175–181. ACM, San Antonio Texas, Huston (2002)
Pope, J., Chalmers, A.: Multi-sensory rendering: combining graphics and acoustics. In: Proceedings of the 7th International Conference in Central Europe on Computer Graphics, pp. 233–242. Siggraph, Bohemia, Plzen, Czech Republic (1999)
Raghuvanshi, N., Narain, R., Lin, M.C.: Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Visual. Comput. Graph. 15(5), 789–801 (2009)
Savioja, L.: Real-time 3d finite-difference time-domain simulation of low-and mid-frequency room acoustics. In: 13th International Conference on Digital Audio Effects, vol. 1, p. 75. Digital Audio Effects, Graz, Austria (2010)
Savioja, L., Huopaniemi, J., Lokki, T., Väänänen, R.: Creating interactive virtual acoustic environments. J. Audio Eng. Soc. 47(9), 675–705 (1999)
Schissler, C., Stirling, P., Mehra, R.: Efficient construction of the spatial room impulse response. In: Virtual Reality (VR), 2017 IEEE, pp. 122–130. IEEE, Los Angeles California (2017)
Serafin, G., Serafin, S.: Sound Design to Enhance Presence in Photorealistic Virtual Reality. Georgia Institute of Technology, Sydney (2004)
Serafin, S., Erkut, C., Kojs, J., Nilsson, N.C., Nordahl, R.: Virtual reality musical instruments: state of the art, design principles, and future directions. Comput. Music J. 30(3), 22–40 (2016)
Shinn-Cunningham, B., Shilling, R.: Virtual Auditory Displays, pp. 65–92. Lawrence Erlbaum Associates Publishers, Mahwah, New Jersey (2002)
Smith, J.O.: Physical modeling using digital waveguides. Comput. Music J. 16(4), 74–91 (1992)
Stevens, F., Murphy, D.T., Savioja, L., Valimaki, V.: Modeling sparsely reflecting outdoor acoustic scenes using the waveguide web. IEEE/ACM Trans. Audio Speech Lang. Proc. 25(8), 1566–1578 (2017)
Summers, C., Jesse, M.: Creating immersive and aesthetic auditory spaces in virtual reality. In: Sonic Interactions for Virtual Environments (SIVE), 2017 I.E. 3rd VR Workshop on, pp. 1–6. IEEE, Los Angeles, CA (2017)
Summers, C., Lympouridis, V., Erkut, C.: Sonic interaction design for virtual and augmented reality environments. In: Sonic Interactions for Virtual Environments (SIVE), 2015 I.E. 2nd VR Workshop on, pp. 1–6. IEEE, Arles (2015)
Takala, T., Hahn, J.: Sound rendering. In: ACM SIGGRAPH Computer Graphics, vol. 26, pp. 211–220. ACM, San Antonio, Texas (1992)
Välimäki, V., Takala, T.: Virtual musical instruments? Natural sound using physical models. Organ. Sound. 1(2), 75–86 (1996)
Valimaki, V., Franck, A., Ramo, J., Gamper, H., Savioja, L.: Assisted listening using a headset: enhancing audio perception in real, augmented, and virtual environments. IEEE Signal Process. Mag. 32(2), 92–99 (2015)
Van Den Doel, K., Kry, P.G., Pai, D.K.: Foleyautomatic: physically-based sound effects for interactive simulation and animation. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 537–544. ACM, New York (2001)
Verron, C., Aramaki, M., Kronland-Martinet, R., Pallone, G.: A 3-d immersive synthesizer for environmental sounds. IEEE Trans. Audio Speech Lang. Process. 18(6), 1550–1561 (2010)
Yeh, H., Mehra, R., Ren, Z., Antani, L., Manocha, D., Lin, M.: Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans. Graph. (TOG). 32(6), 165 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Serafin, S. (2018). Sonic Interactions in Virtual Environments. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_243-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-08234-9_243-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08234-9
Online ISBN: 978-3-319-08234-9
eBook Packages: Living Reference Computer SciencesReference Module Computer Science and Engineering