Synonyms
Definitions
Cybersickness is an uncomfortable side effect experienced by users of immersive interfaces commonly used for Virtual Reality. It is associated with symptoms such as nausea, postural instability, disorientation, headaches, eye-strain, and tiredness.
Cybersickness
Cybersickness is a relatively common, unwanted side effect of immersive interfaces that causes a broad range of unpleasant symptoms such as nausea, headaches, disorientation, and tiredness. More serious symptoms, such as postural instability, although less common, can also result from prolonged exposure to virtual interfaces.
Cybersickness is typically experienced by stationary users that perceive that they are moving in a virtual scene. This stationary reality and the associated compelling experience of self-motion is believed to underlie the condition (Webb and Griffin 2003). By contrast, simulator sickness was first found in pilots who underwent extended training in flight simulators...
References
Ali, S.: Measuring flow complexity in videos. In: Proceedings of the 2013 I.E. International Conference on Computer Video, 1097–1104, IEEE (2013)
Ames, S.L., Wolffsohn, J.S., McBrien, N.A.: The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom. Vis. Sci. 82(3), 168–176 (2005)
Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. 27(3), 433–466 (1995)
Bouchard, S., Robillard, G., Renaud, P., Bernier, F.: Exploring new dimensions in the assessment of virtual reality induced side effects. J. Comput. Inf. Technol. 1(3), 20–32 (2011)
Bruck, S., Watters, P.A.: The factor structure of cybersickness. Displays. 32(4), 153–158 (2011)
Cobb, S., Nichols, S., Ramsey, A., Wilson, J.: Virtual reality-induced symptoms and effects (VRISE). Presence Teleop. Virt. 8(2), 169–186 (1999)
Cowings, P.S., Suter, S., Toscano, W.B., Kamiya, J., Naifeh, K.: General autonomic components of motion sickness. Psychophysiology. 23(5), 542–551 (1986)
Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of Interactive Entertainment (IE2014), Newcastle, Australia. ACM, New York (2014). https://doi.org/10.1145/2677758.2677780
Davis, S., Nesbitt, K., Nalivaiko, E.: Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In: Pisan, Y., Nesbitt, K. Blackmore, K. (eds.) Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015) Sydney, Australia. CRPIT, 167, ACS, 3–14 (2015)
Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays. 44, 42–52 (2016)
Durlach, N.I., Mavor, A.S.: Virtual Reality: Scientific and Technological Challenges. National Academies Press, Washington, DC (1994). https://doi.org/10.17226/4761
Gavgani, A.M., Nesbitt, K.V., Blackmore, K.L., Nalivaiko, E.: Profiling subjective symptoms and autonomic changes associated with cybersickness. Auton. Neurosci. 203, 41–50 (2017)
Gianaros, P.J., Muth, E.R., Mordkoff, J.T., Levine, M.E., Stern, R.: A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviat. Space Environ. Med. 72(2), 115–119 (2001)
Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516 (1998)
Graybiel, A., Wood, C.D., Miller, E.F., Cramer, D.B.: Diagnostic criteria for grading the severity of acute motion sickness. Aerosp. Med. Res Lab. 39, 453–455 (1968)
Hardacre, L.E., Kennedy, P.: Some issues in the development of a motion sickness questionnaire for flight students. Aerosp. Med. 34, 401–402 (1963)
Howarth, P., Costello, P.: The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays. 18(2), 107–116 (1997)
Jahedi, S., Méndez, F.: On the advantages and disadvantages of subjective measures. J. Econ. Behav. Organ. 98, 97–114 (2014)
Kellogg, R.S., Kennedy, R.S., Graybiel, A.: Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers. Aerosp. Med. 36, 315–318 (1965)
Kennedy, R.S., Fowlkes, J.E., Berbaium, K.S., Lilienthal, M.G.: Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat. Space Environ. Med. 63, 588–559 (1992)
Kennedy, R.S., Lane, N., Berbaum, K., Lilienthal, M.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)
Kim, Y., Kim, H., Kim, E., Ko, H., Kim, H.: Characteristic changes in the physiological components of cybersickness. Psychophysiology. 42(5), 616–625 (2005)
Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report 1027. United States Army Research Institute for Behavioral and Social Sciences. http://www.dtic.mil/dtic/tr/fulltext/u2/a29586.pdf. (1995). Accessed 9 Jan 2018
LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)
Lawson, B.D., Mead, A.M.: The sopite syndrome revisted: drowsiness and mood changes during real or apparent motion. Acta Astronaut. 43, 181–192 (1998)
McCauley, M., Sharkey, T.: Cybersickness: perception of self-motion in virtual environments. Presence Teleop. Virt. 1(3), 311–318 (1992)
Muth, E.R., Stern, R.M., Thayer, J.F., Koch, K.L.: Assessment of the multiple dimensions of nausea: the nausea profile (NF). J. Psychosom. Res. 40, 511–520 (1996)
Nalivaiko, E., Rudd, J.A., So, R.H.Y.: Motion sickness, nausea and thermoregulation: the “toxic” hypothesis. Temperature. 1(3), 164–171 (2014)
Nalivaiko, E., Davis, S.L., Blackmore, K.L., Vakulin, A., Nesbitt, K.V.: Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Behav. 151, 583–590 (2015)
Nesbitt, K., Davis, S., Blackmore, K., Nalivaiko, E.: Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays. 48, 1–8 (2017)
Ngampramuan, S., Cerri, M., Del Vecchio, F., Corrigan, J.J., Kamphee, A., Dragic, A.S., Rudd, J.A., Romanovsky, A.A., Nalivaiko, E.: Thermoregulatory correlates of nausea in rats and musk shrews. Oncotarget. 5(6), 1565–1575 (2014)
Ohyama, S., Nishiike, S., Watanabe, H., Matsuoka, K., Akizuki, H., Takeda, N., Harada, T.: Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx. 34(3), 303–306 (2007)
Riccio, G.E., Thomas, A.S.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3(3), 195–240 (1991)
Smith, S.P., Blackmore, K.L., Nesbitt, K.V.: Using optical flow as an objective metric of cybersickness in virtual environments. Paper presented at the Australasian Simulation Congress 2017 (ASC 2017), Sydney, 28–31 Aug 2017. http://hdl.handle.net/1959.13/1346847. Accessed 9 Jan 2018
So, R.H., Ho, A., Lo, W.T.: A metric to quantify virtual scene movement for the study of cybersickness: definition, implementation, and verification. Presence Teleop. Virt. 10(2), 193–215 (2001)
Stern, R.M., Koch, K.L., Andrews, P.: Nausea: Mechanisms and Management. Oxford University Press, New York (2011)
Treisman, M.: Motion sickness, an evolutionary hypothesis. Science. 197, 493–495 (1997)
Webb, N.A., Griffin, M.J.: Eye movement, vection, and motion sickness with foveal and peripheral vision. Aviat. Space Environ. Med. 74(6), 622–625 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this entry
Cite this entry
Nesbitt, K., Nalivaiko, E. (2018). Cybersickness. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_252-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-08234-9_252-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08234-9
Online ISBN: 978-3-319-08234-9
eBook Packages: Living Reference Computer SciencesReference Module Computer Science and Engineering