Abstract
Nowadays semantic lexical resources, like ontologies, are becoming increasingly important in many systems, in particular those providing access to structured textual data. Typically such resources are built based on already existing repositories and by analyzing available texts. In practice, however, building new or enriching existing resources of such type cannot be accomplished without using an appropriate tool. In this paper we present SAUText – a new system which provides infrastructure for carrying out research involving usage of semantic resources and analyzing unstructured textual data. In the system we use dedicated repository for storing various kinds of text data and take advantage of parallelization in order to speed up the analysis.
This work is supported by the National Centre for Research and Development (NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific research and experimental development program: Interdisciplinary System for Interactive Scientific and Scientific-Technical Information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buitelaar, P., Olejnik, D., Sintek, M.: A protege plug-in for ontology extraction from text based on linguistic analysis. In: Proceedings of the 1st European Semantic Web Symposium (ESWS), Heraklion, Greece (2004)
Cimiano, P., Mdche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, International Handbooks on Information Systems, pp. 245–267. Springer, Heidelberg (2009)
Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)
Kao, A., Poteet, S.R.: Natural Language Processing and Text Mining. Springer (2007)
Maedche, A., Volz, R.: The Text-To-Onto Ontology Extraction and Maintenance System. In: Workshop on Integrating Data Mining and Knowledge Management Co-Located with the 1st International Conference on Data Mining, San Jose, California, USA (November 2001)
Maynard, D., Funk, A., Peters, W.: Sprat: a tool for automatic semantic pattern-based ontology population. In: International Conference for Digital Libraries and Semantic Web (2009)
Poon, H., Domingos, P.: Unsupervised ontology induction from text. In: Hajic, J., Carberry, S., Clark, S. (eds.) ACL, pp. 296–305. The Association for Computer Linguistics (2010)
Protaziuk, G., Kryszkiewicz, M., Rybiński, H., Delteil, A.: Discovering compound and proper nouns. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 505–515. Springer, Heidelberg (2007)
Velardi, P., Navigli, R., Cucchiarelli, A., Neri, F.: Evaluation of OntoLearn, a methodology for automatic population of domain ontologies. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Applications and Evaluation. IOS Press (2006)
Weiss, S.M., Indurkhya, N., Zhang, T.: Fundamentals of Predictive Text Mining. Texts in Computer Science. Springer (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Protaziuk, G., Lewandowski, J., Bembenik, R. (2014). SAUText — A System for Analysis of Unstructured Textual Data. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-08326-1_43
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08325-4
Online ISBN: 978-3-319-08326-1
eBook Packages: Computer ScienceComputer Science (R0)