Skip to main content

Combining Stream Processing Engines and Big Data Storages for Data Analysis

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8502))

Included in the following conference series:

Abstract

We propose a system combining stream processing engines and big data storages for analyzing large amounts of data streams. It allows us to analyze data online and to store data for later offline analysis. An emphasis is laid on designing a system to facilitate simple implementations of data analysis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., et al.: The design of the borealis stream processing engine. In: CIDR (2005)

    Google Scholar 

  2. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. The VLDB Journal 12(2), 120–139 (2003)

    Article  Google Scholar 

  3. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2) (2008)

    Google Scholar 

  4. Chu, C.-T., Kim, S.K., Lin, Y.-A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-Reduce for machine learning on multicore. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS, pp. 281–288. MIT Press (2006)

    Google Scholar 

  5. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: Map-Reduce online. In: NSDI, pp. 313–328. USENIX Association (2010)

    Google Scholar 

  6. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J., Elmeleegy, K., Sears, R.: Online aggregation and continuous query support in mapReduce. In: Elmagarmid, A.K., Agrawal, D. (eds.) SIGMOD Conference, pp. 1115–1118. ACM (2010)

    Google Scholar 

  7. Dean, J., Ghemawat, S.: Map-Reduce: a flexible data processing tool. Commun. ACM 53(1), 72–77 (2010)

    Article  Google Scholar 

  8. EsperTech. Esper – complex event processing. Website (2013) esper.codehaus.org

  9. The Apache Software Foundation. Apache Hadoop. Website (2013), hadoop.apache.org

  10. The Apache Software Foundation. Mahout: Scalable machine-learning and data-mining library (2013) mahout.apache.org

  11. Franklin, M.J., Jeffery, S.R., Krishnamurthy, S., Reiss, F., Rizvi, S., Wu, E., Cooper, O., Edakkunni, A., Hong, W.: Design considerations for high fan-in systems: The HiFi approach. In: CIDR (2005)

    Google Scholar 

  12. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Scott, M.L., Peterson, L.L. (eds.) SOSP, pp. 29–43. ACM (2003)

    Google Scholar 

  13. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query processing, resource management, and approximation in a data stream management system. In: CIDR (2003)

    Google Scholar 

  14. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing platform. In: Fan, W., Hsu, W., Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM Workshops, pp. 170–177. IEEE Computer Society (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Steinmaurer, T., Traxler, P., Zwick, M., Stumptner, R., Lettner, C. (2014). Combining Stream Processing Engines and Big Data Storages for Data Analysis. In: Andreasen, T., Christiansen, H., Cubero, JC., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08326-1_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08325-4

  • Online ISBN: 978-3-319-08326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics