Abstract
Due to the recent success of affordable RGBD cameras, solutions to the Visual Simultaneous Localization and Mapping (VSLAM) problem has experienced a huge leap. To enable accurate mapping solutions, most of the proposed solutions expect static environments. Thinking of industrial applications, there is no guarantee for static environments. The SLAM algorithm has to cope with moving objects like human beings. We present an approach to detect moving objects in RGBD camera images. The approach is based on point cloud and image filtering techniques. We present test results using publicly available datasets. We further show the performance and influence of the algorithm on mapping and on the accuracy of a visual SLAM system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lowe, D.: Object recognition from local scale-invariant features. In: 7th IEEE International Conference on Computer Vision (ICCV). (1999).
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding (2008).
Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (2010).
Hartmann, J., Kluessendorff, J.H., Maehle, E.: A Unified Visual Graph-Based Approach to Navigation for Wheeled Mobile Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (2013).
Kluessendorff, J.H., Hartmann, J., Forouher, D., Maehle, E.: Graph-Based Visual SLAM and Visual Odometry using an RGB-D Camera. In: 9th International Workshop on Robot Motion and Control (RoMoCo). (2013).
Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An Evaluation of the RGB-D SLAM System. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA). (2012).
Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research (2012).
Grisetti, G., Stachniss, C., Burgard, W.: Nonlinear Constraint Network Optimization for Efficient Map Learning. IEEE Transactions on Intelligent Transportation Systems (2009).
Stückler, J., Behnke, S.: Multi-Resolution Surfel Maps for Efficient Dense 3D Modeling and Tracking. In: Journal of Visual Communication and Image Representation. (2013).
Choi, W., Pantofaru, C., Savarese, S.: Detecting and tracking people using an RGB-D camera via multiple detector fusion. In: IEEE International Conference on Computer Vision Workshops ICCV Workshops. (2011).
Munaro, M., Basso, F., Menegatti, E.: Tracking people within groups with RGB-D data. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012).
Zhang, H., Reardon, C., Parker, L.E.: Real-time multiple human perception with color-depth cameras on a mobile robot. IEEE Transactions on Cybernetics (2013).
Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: A general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA). (2011).
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Computer Vision ECCV 2010. Lecture Notes in Computer Science. Springer, Berlin / Heidelberg (2010).
Hartmann, J., Kluessendorff, J.H., Maehle, E.: A Comparison of Feature Descriptors for Visual SLAM. In: 6th European Conference on Mobile Robots (ECMR). (2013).
Holz, D., Trevor, A.J.B., Dixon, M., Gedikli, S., Rusu, B.: Fast segmentation of RGB-D images for semantic scene understanding. In: ICRA Workshop on Semantic Perception and Mapping for Knowledge-enabled Service Robotics. (2012).
Linán, C.C.: cvBlob. http://cvblob.googlecode.com
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Klüssendorff, J.H., Ehlers, K., Maehle, E. (2016). Visual Mapping in Light-Crowded Indoor Environments. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-08338-4_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08337-7
Online ISBN: 978-3-319-08338-4
eBook Packages: EngineeringEngineering (R0)