Skip to main content

Line-Distortion, Bandwidth and Path-Length of a Graph

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1160 Accesses

Abstract

We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour’s path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: (i) if a graph G can be embedded into the line with distortion k, then G admits a Robertson-Seymour’s path-decomposition with bags of diameter at most k in G; (ii) for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; (iii) there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; (iv) AT-free graphs and some intersection families of graphs have path-length at most 2; (v) for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, Technical report TR98-014, University of Bonn (1997)

    Google Scholar 

  2. Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the. In: STOC 2005, pp. 225–233. ACM (2005)

    Google Scholar 

  3. Bǎdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: SODA 2005, pp. 119–128. ACM/SIAM (2005)

    Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple-Free Graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discr. Math. 307, 208–229 (2007)

    Article  MathSciNet  Google Scholar 

  6. Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 171–183. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Feige, U.: Approximating the bandwidth via volume respecting embedding. J. of Computer and System Science 60, 510–539 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion Is Fixed Parameter Tractable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golovach, P.A., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-free graphs. Theor. Comput. Sci. 412, 7001–7008 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gupta, A.: Improved Bandwidth Approximation for Trees and Chordal Graphs. J. Algorithms 40, 24–36 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time. Journal of Discrete Algorithms 7, 533–544 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion embeddings. Information Processing Letters 110, 312–316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion embeddings into a path of bipartite permutation graphs and threshold graphs. Theoretical Computer Science 412, 1275–1297 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Handbook of Discrete and Computational Geometry, pp. 177–196. CRC (2004)

    Google Scholar 

  16. Kloks, T., Kratsch, D., Müller, H.: Approximating the Bandwidth for Asteroidal Triple-Free Graphs. J. Algorithms 32, 41–57 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kratsch, D., Stewart, L.: Approximating Bandwidth by Mixing Layouts of Interval Graphs. SIAM J. Discrete Math. 15, 435–449 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Monien, B.: The Bandwidth-Minimization Problem for Caterpillars with Hair Length 3 is NP-Complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Räcke, H.: http://ttic.uchicago.edu/~harry/teaching/pdf/lecture15.pdf

  20. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35, 39–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dragan, F.F., Köhler, E., Leitert, A. (2014). Line-Distortion, Bandwidth and Path-Length of a Graph. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics