Abstract
We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour’s path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: (i) if a graph G can be embedded into the line with distortion k, then G admits a Robertson-Seymour’s path-decomposition with bags of diameter at most k in G; (ii) for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; (iii) there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; (iv) AT-free graphs and some intersection families of graphs have path-length at most 2; (v) for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, Technical report TR98-014, University of Bonn (1997)
Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the. In: STOC 2005, pp. 225–233. ACM (2005)
Bǎdoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Raecke, H., Ravi, R., Sidiropoulos, A.: Approximation algorithms for low-distortion embeddings into low-dimensional spaces. In: SODA 2005, pp. 119–128. ACM/SIAM (2005)
Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple-Free Graphs. SIAM Journal on Discrete Mathematics 10, 399–430 (1997)
Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discr. Math. 307, 208–229 (2007)
Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 171–183. Springer, Heidelberg (2011)
Feige, U.: Approximating the bandwidth via volume respecting embedding. J. of Computer and System Science 60, 510–539 (2000)
Fellows, M.R., Fomin, F.V., Lokshtanov, D., Losievskaja, E., Rosamond, F.A., Saurabh, S.: Distortion Is Fixed Parameter Tractable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 463–474. Springer, Heidelberg (2009)
Fomin, F.V., Lokshtanov, D., Saurabh, S.: An exact algorithm for minimum distortion embedding. Theor. Comput. Sci. 412, 3530–3536 (2011)
Golovach, P.A., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-free graphs. Theor. Comput. Sci. 412, 7001–7008 (2011)
Gupta, A.: Improved Bandwidth Approximation for Trees and Chordal Graphs. J. Algorithms 40, 24–36 (2001)
Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time. Journal of Discrete Algorithms 7, 533–544 (2009)
Heggernes, P., Meister, D.: Hardness and approximation of minimum distortion embeddings. Information Processing Letters 110, 312–316 (2010)
Heggernes, P., Meister, D., Proskurowski, A.: Computing minimum distortion embeddings into a path of bipartite permutation graphs and threshold graphs. Theoretical Computer Science 412, 1275–1297 (2011)
Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Handbook of Discrete and Computational Geometry, pp. 177–196. CRC (2004)
Kloks, T., Kratsch, D., Müller, H.: Approximating the Bandwidth for Asteroidal Triple-Free Graphs. J. Algorithms 32, 41–57 (1999)
Kratsch, D., Stewart, L.: Approximating Bandwidth by Mixing Layouts of Interval Graphs. SIAM J. Discrete Math. 15, 435–449 (2002)
Monien, B.: The Bandwidth-Minimization Problem for Caterpillars with Hair Length 3 is NP-Complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)
Räcke, H.: http://ttic.uchicago.edu/~harry/teaching/pdf/lecture15.pdf
Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35, 39–61 (1983)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dragan, F.F., Köhler, E., Leitert, A. (2014). Line-Distortion, Bandwidth and Path-Length of a Graph. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)