Skip to main content

Algorithms Parameterized by Vertex Cover and Modular Width, through Potential Maximal Cliques

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1167 Accesses

Abstract

In this paper we give upper bounds on the number of minimal separators and potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover (vc) and modular width (mw). We prove that for any graph, the number of minimal separators is \(\mathcal{O}^*(3^{\operatorname{vc}})\) and \(\mathcal{O}^*(1.6181^{\operatorname{mw}})\), the number of potential maximal cliques is \(\mathcal{O}^*(4^{\operatorname{vc}})\) and \(\mathcal{O}^*(1.7347^{\operatorname{mw}})\), and these objects can be listed within the same running times. (The \(\mathcal{O}^*\) notation suppresses polynomial factors in the size of the input.) Combined with known results [3,12], we deduce that a large family of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced Path, Feedback vertex set and many others, can be solved in time \(\mathcal{O}^*(4^{\operatorname{vc}})\) or \(\mathcal{O}^*(1.7347^{\operatorname{mw}})\).

Supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. Discrete Applied Mathematics 145(2), 143–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in with the modular decomposition. Algorithmica 36(4), 375–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)

    Article  MATH  Google Scholar 

  5. Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)

    Article  MathSciNet  Google Scholar 

  9. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques (2014), http://arxiv.org/abs/1404.3882

  12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and cmso. In: Chekuri, C. (ed.) SODA, pp. 582–583. SIAM (2014), http://arxiv.org/abs/1309.1559

  13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  14. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Gysel, R.: Potential maximal clique algorithms for perfect phylogeny problems. CoRR, abs/1303.3931 (2013)

    Google Scholar 

  18. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lokshtanov, D.: On the complexity of computing treelength. Discrete Applied Mathematics 158(7), 820–827 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I. (2014). Algorithms Parameterized by Vertex Cover and Modular Width, through Potential Maximal Cliques. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics