Abstract
In this paper we give upper bounds on the number of minimal separators and potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover (vc) and modular width (mw). We prove that for any graph, the number of minimal separators is \(\mathcal{O}^*(3^{\operatorname{vc}})\) and \(\mathcal{O}^*(1.6181^{\operatorname{mw}})\), the number of potential maximal cliques is \(\mathcal{O}^*(4^{\operatorname{vc}})\) and \(\mathcal{O}^*(1.7347^{\operatorname{mw}})\), and these objects can be listed within the same running times. (The \(\mathcal{O}^*\) notation suppresses polynomial factors in the size of the input.) Combined with known results [3,12], we deduce that a large family of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced Path, Feedback vertex set and many others, can be solved in time \(\mathcal{O}^*(4^{\operatorname{vc}})\) or \(\mathcal{O}^*(1.7347^{\operatorname{mw}})\).
Supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L., Fomin, F.V.: Tree decompositions with small cost. Discrete Applied Mathematics 145(2), 143–154 (2005)
Bodlaender, H.L., Rotics, U.: Computing the treewidth and the minimum fill-in with the modular decomposition. Algorithmica 36(4), 375–408 (2003)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)
Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)
Chapelle, M., Liedloff, M., Todinca, I., Villanger, Y.: Treewidth and pathwidth parameterized by the vertex cover number. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 232–243. Springer, Heidelberg (2013)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008)
Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)
Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques (2014), http://arxiv.org/abs/1404.3882
Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and cmso. In: Chekuri, C. (ed.) SODA, pp. 582–583. SIAM (2014), http://arxiv.org/abs/1309.1559
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)
Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3), 289–308 (2012)
Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1-3), 3–31 (2004)
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Heidelberg (2013)
Gysel, R.: Potential maximal clique algorithms for perfect phylogeny problems. CoRR, abs/1303.3931 (2013)
Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)
Lokshtanov, D.: On the complexity of computing treelength. Discrete Applied Mathematics 158(7), 820–827 (2010)
Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I. (2014). Algorithms Parameterized by Vertex Cover and Modular Width, through Potential Maximal Cliques. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)