Abstract
This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bateni, M., Hajiaghayi, M., Liaghat, V.: Improved approximation algorithms for (budgeted) node-weighted Steiner problems. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 81–92. Springer, Heidelberg (2013)
Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theoretical Computer Science 385(1-3), 202–213 (2007)
Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244–254 (2008)
Berger, A., Parekh, O.: Erratum to: Linear time algorithms for generalized edge dominating set problems. Algorithmica 62(1-2), 633–634 (2012)
Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. Journal of the ACM 60(1), 6 (2013)
Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A \(2\frac{1}{10}\)-approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization 5(3), 317–326 (2001)
Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Computational Complexity 15(2), 94–114 (2006)
Chekuri, C., Ene, A., Vakilian, A.: Prize-collecting survivable network design in node-weighted graphs. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 98–109. Springer, Heidelberg (2012)
Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894 (1994)
Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118(3), 199–207 (2002)
Fukunaga, T.: Spider covers for prize-collecting network activation problem. CoRR abs/1310.5422 (2013)
Fukunaga, T.: Covering problems in edge- and node-weighted graphs. CoRR abs/1404.4123 (2014)
Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)
Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)
Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic steiner tree relaxations. In: STOC, pp. 1161–1176 (2012)
Hajiaghayi, M., Liaghat, V., Panigrahi, D.: Online node-weighted Steiner forest and extensions via disk paintings. In: FOCS, pp. 558–567 (2013)
Kamiyama, N.: The prize-collecting edge dominating set problem in trees. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 465–476. Springer, Heidelberg (2010)
Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)
Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal of Algorithms 19(1), 104–115 (1995)
Könemann, J., Sadeghabad, S.S., Sanità, L.: An LMP O(logn)-approximation algorithm for node weighted prize collecting Steiner tree. In: FOCS, pp. 568–577 (2013)
Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted Steiner tree problems. SIAM Journal on Computing 37(2), 460–481 (2007)
Naor, J., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and related problems. In: FOCS, pp. 210–219 (2011)
Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal on Computing 39(7), 3001–3022 (2010)
Nutov, Z.: Approximating minimum-cost connectivity problems via uncrossable bifamilies. ACM Transactions on Algorithms 9(1), 1 (2012)
Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)
Panigrahi, D.: Survivable network design problems in wireless networks. In: SODA, pp. 1014–1027 (2011)
Parekh, O.: Approximation algorithms for partially covering with edges. Theoretical Computer Science 400(1-3), 159–168 (2008)
Vakilian, A.: Node-weighted prize-collecting survivable network design problems. Master’s thesis, University of Illinois at Urbana-Champaign (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fukunaga, T. (2014). Covering Problems in Edge- and Node-Weighted Graphs. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)