Abstract
We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the ℓ-bounded Channel Assignment (when the edge weights are bounded by ℓ) running in time \(O^*((2\sqrt{\ell+1})^n)\). This is the first algorithm which breaks the (O(ℓ))n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor.
A major open problem asks whether Channel Assignment admits a O(c n)-time algorithm, for a constant c independent of ℓ. We consider a similar question for Generalized T -Coloring, a CSP problem that generalizes Channel Assignment. We show that Generalized T -Coloring does not admit a \(2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)\)-time algorithm, where r is the size of the instance.
Research supported by National Science Centre of Poland, grant number UMO-2013/09/B/ST6/03136.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)
Cygan, M., Kowalik, L.: Channel assignment via fast zeta transform. Inf. Process. Lett. 111(15), 727–730 (2011)
Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)
Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)
Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974)
Husfeldt, T., Paturi, R., Sorkin, G.B., Williams, R.: Exponential Algorithms: Algorithms and Complexity Beyond Polynomial Time (Dagstuhl Seminar 13331). Dagstuhl Reports 3(8), 40–72 (2013)
Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
Junosza-Szaniawski, K., Rzążewski, P.: An exact algorithm for the generalized list T-coloring problem. CoRR, abs/1311.0603 (2013)
Král, D.: An exact algorithm for the channel assignment problem. Discrete Applied Mathematics 145(2), 326–331 (2005)
McDiarmid, C.J.H.: On the span in channel assignment problems: bounds, computing and counting. Discrete Mathematics 266(1-3), 387–397 (2003)
Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kowalik, Ł., Socała, A. (2014). Assigning Channels via the Meet-in-the-Middle Approach. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)