Skip to main content

Assigning Channels via the Meet-in-the-Middle Approach

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1117 Accesses

Abstract

We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the ℓ-bounded Channel Assignment (when the edge weights are bounded by ℓ) running in time \(O^*((2\sqrt{\ell+1})^n)\). This is the first algorithm which breaks the (O(ℓ))n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor.

A major open problem asks whether Channel Assignment admits a O(c n)-time algorithm, for a constant c independent of ℓ. We consider a similar question for Generalized T -Coloring, a CSP problem that generalizes Channel Assignment. We show that Generalized T -Coloring does not admit a \(2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)\)-time algorithm, where r is the size of the instance.

Research supported by National Science Centre of Poland, grant number UMO-2013/09/B/ST6/03136.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cygan, M., Kowalik, L.: Channel assignment via fast zeta transform. Inf. Process. Lett. 111(15), 727–730 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)

    Article  Google Scholar 

  5. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Husfeldt, T., Paturi, R., Sorkin, G.B., Williams, R.: Exponential Algorithms: Algorithms and Complexity Beyond Polynomial Time (Dagstuhl Seminar 13331). Dagstuhl Reports 3(8), 40–72 (2013)

    Google Scholar 

  7. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Junosza-Szaniawski, K., Rzążewski, P.: An exact algorithm for the generalized list T-coloring problem. CoRR, abs/1311.0603 (2013)

    Google Scholar 

  9. Král, D.: An exact algorithm for the channel assignment problem. Discrete Applied Mathematics 145(2), 326–331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. McDiarmid, C.J.H.: On the span in channel assignment problems: bounds, computing and counting. Discrete Mathematics 266(1-3), 387–397 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Traxler, P.: The time complexity of constraint satisfaction. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 190–201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kowalik, Ł., Socała, A. (2014). Assigning Channels via the Meet-in-the-Middle Approach. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics