Abstract
We study the parameterized complexity of the graph isomorphism problem when parameterized by width parameters related to tree decompositions. We apply the following technique to obtain fixed-parameter tractability for such parameters. We first compute an isomorphism invariant set of potential bags for a decomposition and then apply a restricted version of the Weisfeiler-Lehman algorithm to solve isomorphism. With this we show fixed-parameter tractability for several parameters and provide a unified explanation for various isomorphism results concerned with parameters related to tree decompositions.
As a possibly first step towards intractability results for parameterized graph isomorphism we develop an fpt Turing-reduction from strong tree width to the a priori unrelated parameter maximum degree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. In: FSTTCS, pp. 327–337 (2010)
Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the complexity of canonical colour refinement. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 145–156. Springer, Heidelberg (2013)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L.: Necessary edges in k-chordalisations of graphs. J. Comb. Optim. 7(3), 283–290 (2003)
Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)
Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 218–230. Springer, Heidelberg (2012)
Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)
Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: IEEE Conference on Computational Complexity, pp. 203–214 (2009)
Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1-3), 45–58 (1996)
Evdokimov, S., Ponomarenko, I.N.: Isomorphism of coloured graphs with slowly increasing multiplicity of jordan blocks. Combinatorica 19(3), 321–333 (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science). An EATCS Series. Springer, London (2006)
Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and cmso. In: SODA, pp. 582–583 (2014)
Fuhlbrück, F.: Fixed-parameter tractability of the graph isomorphism and canonization problems. Diploma thesis, Humboldt-Universität zu Berlin (2013)
Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: FOCS, pp. 36–41 (1980)
Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. In: LICS, pp. 179–188 (2010)
Grohe, M.: Definability and descriptive complexity on databases of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 70–82. Springer, Heidelberg (1998)
Klawe, M., Corneil, D., Proskurowski, A.: Isomorphism testing in hookup classes. SIAM Journal on Algebraic Discrete Methods 3(2), 260–274 (1982)
Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: Its structural complexity. Birkhäuser Verlag, Basel (1993)
Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)
Nagoya, T.: Counting graph isomorphisms among chordal graphs with restricted clique number. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 136–147. Springer, Heidelberg (2001)
Otachi, Y.: Isomorphism for graphs of bounded connected-path-distance-width. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 455–464. Springer, Heidelberg (2012)
Otachi, Y., Schweitzer, P.: full version of the paper. arXiv:1403.7238 [cs.DM] (2014)
Schweitzer, P.: Problems of unknown complexity: graph isomorphism and Ramsey theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2009)
Schweitzer, P.: Isomorphism of (mis)labeled graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 370–381. Springer, Heidelberg (2011)
Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach, L. (ed.) Fundamentals of Computation Theory, FCT 1985. LNCS, vol. 199, pp. 412–421. Springer, Heidelberg (1985)
Toda, S.: Gurafu Doukeisei Hantei Mondai (The Graph Isomorphism Decision Problem). Nihon University, Tokyo, Japan (2001) (in Japanese)
Toda, S.: Computing automorphism groups of chordal graphs whose simplicial components are of small size. IEICE Transactions 89-D(8), 2388–2401 (2006)
Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Otachi, Y., Schweitzer, P. (2014). Reduction Techniques for Graph Isomorphism in the Context of Width Parameters. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_32
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)