Skip to main content

Reduction Techniques for Graph Isomorphism in the Context of Width Parameters

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

  • 1148 Accesses

Abstract

We study the parameterized complexity of the graph isomorphism problem when parameterized by width parameters related to tree decompositions. We apply the following technique to obtain fixed-parameter tractability for such parameters. We first compute an isomorphism invariant set of potential bags for a decomposition and then apply a restricted version of the Weisfeiler-Lehman algorithm to solve isomorphism. With this we show fixed-parameter tractability for several parameters and provide a unified explanation for various isomorphism results concerned with parameters related to tree decompositions.

As a possibly first step towards intractability results for parameterized graph isomorphism we develop an fpt Turing-reduction from strong tree width to the a priori unrelated parameter maximum degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. In: FSTTCS, pp. 327–337 (2010)

    Google Scholar 

  2. Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the complexity of canonical colour refinement. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 145–156. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: Necessary edges in k-chordalisations of graphs. J. Comb. Optim. 7(3), 283–290 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1-2), 17–32 (2002)

    Article  MATH  Google Scholar 

  6. Bouland, A., Dawar, A., Kopczyński, E.: On tractable parameterizations of graph isomorphism. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 218–230. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: IEEE Conference on Computational Complexity, pp. 203–214 (2009)

    Google Scholar 

  9. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1-3), 45–58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Evdokimov, S., Ponomarenko, I.N.: Isomorphism of coloured graphs with slowly increasing multiplicity of jordan blocks. Combinatorica 19(3), 321–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science). An EATCS Series. Springer, London (2006)

    Google Scholar 

  12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and cmso. In: SODA, pp. 582–583 (2014)

    Google Scholar 

  13. Fuhlbrück, F.: Fixed-parameter tractability of the graph isomorphism and canonization problems. Diploma thesis, Humboldt-Universität zu Berlin (2013)

    Google Scholar 

  14. Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: FOCS, pp. 36–41 (1980)

    Google Scholar 

  15. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. In: LICS, pp. 179–188 (2010)

    Google Scholar 

  16. Grohe, M.: Definability and descriptive complexity on databases of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 70–82. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Klawe, M., Corneil, D., Proskurowski, A.: Isomorphism testing in hookup classes. SIAM Journal on Algebraic Discrete Methods 3(2), 260–274 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Köbler, J., Schöning, U., Torán, J.: The graph isomorphism problem: Its structural complexity. Birkhäuser Verlag, Basel (1993)

    Google Scholar 

  19. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Nagoya, T.: Counting graph isomorphisms among chordal graphs with restricted clique number. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 136–147. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Otachi, Y.: Isomorphism for graphs of bounded connected-path-distance-width. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 455–464. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Otachi, Y., Schweitzer, P.: full version of the paper. arXiv:1403.7238 [cs.DM] (2014)

    Google Scholar 

  23. Schweitzer, P.: Problems of unknown complexity: graph isomorphism and Ramsey theoretic numbers. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2009)

    Google Scholar 

  24. Schweitzer, P.: Isomorphism of (mis)labeled graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 370–381. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Seese, D.: Tree-partite graphs and the complexity of algorithms. In: Budach, L. (ed.) Fundamentals of Computation Theory, FCT 1985. LNCS, vol. 199, pp. 412–421. Springer, Heidelberg (1985)

    Google Scholar 

  26. Toda, S.: Gurafu Doukeisei Hantei Mondai (The Graph Isomorphism Decision Problem). Nihon University, Tokyo, Japan (2001) (in Japanese)

    Google Scholar 

  27. Toda, S.: Computing automorphism groups of chordal graphs whose simplicial components are of small size. IEICE Transactions 89-D(8), 2388–2401 (2006)

    Google Scholar 

  28. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Otachi, Y., Schweitzer, P. (2014). Reduction Techniques for Graph Isomorphism in the Context of Width Parameters. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics