Skip to main content

New Approximability Results for the Robust k-Median Problem

  • Conference paper
Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

Abstract

We consider a variant of the classical k-median problem, introduced by Anthony et al.[1]. In the Robust k-Median problem, we are given an n-vertex metric space (V,d) and m client sets \(\left\{ S_i \subseteq V \right\}_{i=1}^m\). We want to open a set F ⊆ V of k facilities such that the worst case connection cost over all client sets is minimized; that is, minimize \(\max_{i}\sum_{v \in S_i} d(F,v)\). Anthony et al. showed an O(logm) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(logm/ loglogm) approximation hardness, unless \({\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}})\). This result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anthony, B.M., Goyal, V., Gupta, A., Nagarajan, V.: A plant location guide for the unsure: Approximation algorithms for min-max location problems. Math. Oper. Res. 35(1), 79–101 (2010) (Also in SODA 2008)

    Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generalizations of network design problems with degree bounds. Math. Program. 141(1-2), 479–506 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: FOCS, pp. 378–388. IEEE Computer Society (1999)

    Google Scholar 

  7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 33(6), 305–308 (1990), http://www.sciencedirect.com/science/article/pii/002001909090214I

    Article  MATH  MathSciNet  Google Scholar 

  10. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the euclidean k-median problem. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 378–389. Springer, Heidelberg (1999)

    Google Scholar 

  11. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 901–910. ACM (2013)

    Google Scholar 

  12. Lin, J.H., Vitter, J.S.: Approximation algorithms for geometric median problems. Inf. Process. Lett. 44(5), 245–249 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5), 960–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhattacharya, S., Chalermsook, P., Mehlhorn, K., Neumann, A. (2014). New Approximability Results for the Robust k-Median Problem. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics