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Abstract. We consider the revenue maximization problem with sharp
multi-demand, in which m indivisible items have to be sold to n potential
buyers. Each buyer i is interested in getting exactly di items, and each
item j gives a benefit vij to buyer i. We distinguish between unrelated
and related valuations. In the former case, the benefit vij is completely
arbitrary, while, in the latter, each item j has a quality qj , each buyer
i has a value vi and the benefit vij is defined as the product viqj . The
problem asks to determine a price for each item and an allocation of
bundles of items to buyers with the aim of maximizing the total revenue,
that is, the sum of the prices of all the sold items. The allocation must
be envy-free, that is, each buyer must be happy with her assigned bundle
and cannot improve her utility. We first prove that, for related valuations,
the problem cannot be approximated to a factor O(m1−ǫ), for any ǫ > 0,
unless P = NP and that such result is asymptotically tight. In fact we pro-
vide a simple m-approximation algorithm even for unrelated valuations.
We then focus on an interesting subclass of ”proper” instances, that do
not contain buyers a priori known not being able to receive any item. For
such instances, we design an interesting 2-approximation algorithm and
show that no (2− ǫ)-approximation is possible for any 0 < ǫ ≤ 1, unless
P = NP. We observe that it is possible to efficiently check if an instance
is proper, and if discarding useless buyers is allowed, an instance can
be made proper in polynomial time, without worsening the value of its
optimal solution.

1 Introduction

A major decisional process in many business activities concerns whom to sell
products (or services) to and at what price, with the goal of maximizing the
total revenue. On the other hand, consumers would like to buy at the best
possible prices and experience fair sale criteria.

In this work, we address such a problem from a computational point of view,
considering a two-sided market in which the supply side consists of m indivisible
items and the demand one is populated by n potential buyers (in the following

http://arxiv.org/abs/1312.3892v1


also called consumers or customers), where each buyer i has a demand di (the
number of items that i requests) and valuations vij representing the benefit
i gets when owing item j. As several papers on this topic (see for instance
[12,22,17,7,15]), we assume that, by means of market research or interaction
with the consumers, the seller knows each customer’s valuation for each item.

The seller sets up a price pj for each item j and assigns (i.e., sells) bundle
of items to buyers with the aim of maximizing her revenue, that is the sum of
the prices of all the sold items. When a consumer is assigned (i.e., buys) a set of
items, her utility is the difference between the total valuation of the items she
gets (valuations being additive) and the purchase price.

The sets of the sold items, the purchasing customers and their purchase prices
are completely determined by the allocation of bundles of items to customers
unilaterally decided by the seller. Nevertheless, we require such an allocation to
meet two basic fairness constraints: (i) each customer i is allocated at most one
bundle not exceeding her demand di and providing her a non-negative utility,
otherwise she would not buy the bundle; (ii), the allocation must be envy-free
[30], i.e., each customer i does not prefer any subset of di items different from
the bundle she is assigned.

The envy-freeness notion adopted in this paper is the typical one of pricing
problems. Anyway, in the literature there also exist weaker forms usually applied
in fair division settings (see for instance [16]) where, basically, no buyer wants
to switch her allocation with that of another buyer, without combining different
bundles. Notice that in our scenario a trivial envy-free solution always exists
that lets pj = ∞ for each item j and does not assign any item to any buyer.

Many papers (see the Related Work section for a detailed reference list) con-
sidered the unit demand case in which di = 1 for each consumer i. Arguably, the
multi-demand case, where di ≥ 1 for each consumer i, is more general and finds
much more applicability. To this aim, we can identify two main multi-demand
schemes. The first one is the relaxed multi-demand model, where each buyer i
requests at most di ≥ 1 items, and the second one is the sharp multi-demand

model, where each buyer i requests exactly di ≥ 1 items and, therefore, a bundle
of size less than di has no value for buyer i.

For relaxed multi-demand models, a standard technique can reduce the prob-
lem to the unit demand case in the following way: each buyer i with demand di
is replaced by di copies of buyer i, each requesting a single item. However, such
a trick does not apply to the sharp demand model. Moreover, as also pointed
out in [7], the sharp multi-demand model exhibits a property that unit demand
and relaxed multi-demand ones do not posses. In fact, while in the latter model
any envy-free pricing is such that the price pj is always at most the value of
vij , in the sharp demand model, a buyer i may pay an item j more than her
own valuation for that item, i.e., pj > vij and compensate her loss with profits
from the other items she gets (see section 3.1 of [7]). Such a property, also called
overpricing, clearly adds an extra challenge to find an optimal revenue.

The sharp demand model is quite natural in several settings. Consider, for
instance, a scenario in which a public organization has the need of buying a fixed



quantity of items in order to reach a specific purpose (i.e. locations for offices,
cars for services, bandwidth, storage, or whatever else), where each item might
have a different valuation for the organization because of its size, reliability, po-
sition, etc. Yet, suppose a user wants to store on a remote server a file of a given
size s and there is a memory storage vendor that sells slots of fixed size c, where
each cell might have different features depending on the server location and
speed and then yielding different valuations for the user. In this case, a number
of items smaller than

⌈
s
c

⌉
has no value for the user. Similar scenarios also apply

to cloud computing. In [7], the authors used the following applications for the
sharp multi-demand model. In TV (or radio) advertising [23], advertisers may
request different lengths of advertising slots for their ads programs. In banner (or
newspaper) advertising, advertisers may request different sizes or areas for their
displayed ads, which may be decomposed into a number of base units. Also, con-
sider a scenario in which advertisers choose to display their advertisement using
medias (video, audio, animation) [4,24] that would usually need a fixed number
of positions, while text ads would need only one position each. An example of
formulation sponsored search using sharp multi-demands can be found in [13].
Other results concerning the sharp multi-demand model in the Bayesian setting
can be found in [11].

Related Work. Pricing problems have been intensively studied in the literature,
see e.g., [26,27,21,20,25,1,18] just to cite a few, both in the case in which the
consumers’ preferences are unknown (mechanism design [29,5]) and in the case
of full information that we consider in this paper. In fact, our interest here is in
maximizing the seller’s profit assuming that consumers’ preferences are gathered
through market research or conjoint analysis [12,22,17,7,15]. From an algorithmic
point of view, [17] is the first paper dealing with the problem of computing the
envy-free pricing of maximum revenue. The authors considered the unit demand
case for which they gave an O(log n)-approximation algorithm and showed that
computing an optimal envy-free pricing is APX-hard. Briest [2] showed that,
under reasonable complexity assumptions, the revenue maximization problem
in the unit demand model cannot be approximated within O(logε n) for some
ε > 0. The subcase in which every buyer positively evaluates at most two items
has been studied in [6]. The authors proved that the problem is solvable in
polynomial time and it becomes NP-hard if some buyer gets interested in at
least three items.

For the multi-demand model, Chen et. al. [8] gave anO(logD) approximation
algorithm when there is a metric space behind all items, whereD is the maximum
demand, and Briest [2] showed that the problem is hard to approximate within
a ratio of O(nε) for some ε > 0.

To the best of our knowledge, [7] is the first paper explicitly dealing with
the sharp multi-demand model. The authors considered a particular valuation
scheme (also used in [14,28] for keywords advertising scenarios) where each item
j has a parameter qj measuring the quality of the item and each buyer i has a
value vi representing the benefit that i gets when owing an item of unit quality.
Thus, the benefit that i obtains from item j is given by viqj . For such a problem,



the authors proved that computing the envy-free pricing of maximum revenue is
NP-hard. Moreover, they showed that if the demand of each buyer is bounded
by a constant, the problem becomes solvable in polynomial time. We remark
that this valuation scheme is a special case of the one in which the valuations
vij are completely arbitrary and given as an input of the problem. Throughout
the paper, we will refer to the former scheme as to related valuations and to
the latter as to unrelated valuations. Recently [10] considered the sharp multi-
demand model with the additional constraint in which items are arranged as a
sequence and buyers want items that are consecutive in the sequence.

Finally [15] studied the pricing problem in the case in which buyers have
a budget, but no demand constraints. The authors considered a special case of
related valuations in which all qualities are equal to 1 (i.e., qj = 1 for each item j).
They proved that the problem is still NP-hard and provided a 2-approximation
algorithm. Such algorithm assigns the same price to all the sold items.

Many of the papers listed above deal with the case of limited supply. Another
stream of research considers unlimited supply, that is, the scenario in which each
item j exists in ej copies and it is explicitly allowed that ej = ∞. The limited
supply setting seems generally more difficult than the unlimited supply one. In
this paper we consider the limited supply setting. Interesting results for unlimited
supply can be found in [17,9,3].
Our Contribution. We consider the revenue maximization problem with sharp
multi-demand and limited supply. We first prove that, for related valuations, the
problem cannot be approximated to a factor O(m1−ǫ), for any ǫ > 0, unless P

= NP and that such result is asymptotically tight. In fact we provide a simple
m-approximation algorithm even for unrelated valuations.

Our inapproximability proof relies on the presence of some buyers not being
able to receive any bundle of items in any envy-free outcome. Thus, it becomes
natural to ask oneself what happens for instances of the problem, that we call
proper, where no such pathological buyers exist. For proper instances, we design
an interesting 2-approximation algorithm and show that the problem cannot be
approximated to a factor 2− ǫ for any 0 < ǫ ≤ 1 unless P = NP. Therefore, also
in this subcase, our results are tight. We remark that it is possible to efficiently
decide whether an instance is proper. Moreover, if discarding useless buyers is
allowed, an instance can be made proper in polynomial time, without worsening
the value of its optimal solution.

2 Model and Preliminaries

In the Revenue Maximization Problem with Sharp Multi-Demands (RMPSD)
investigated in this paper, we are given a market made up of a set M =
{1, 2, . . . ,m} of items and a set N = {1, 2, . . . , n} of buyers. Each item j ∈ M
has unit supply (i.e., only one available copy). We consider both unrelated and
related valuations. In the former each buyers i has valuations vij representing
the benefit i gets when owing item j. In the latter each item is characterized by
a quality (or desirability) qj > 0, while each buyer i ∈ N has a value vi > 0,



measuring the benefit that she gets when receiving a unit of quality, thus, the
valuation that buyer i has for item j is vij = viqj . We notice that related is
a special case of unrelated valuations. Throughout the paper, when not explic-
itly indicated, we refer to related valuations. Finally each buyer i has a demand

di ∈ Z
+, which specifies the exact number of items she wants to get. In the

following we assume items and bidders ordered in non-increasing order, that is,
vi ≥ vi′ for i < i′ and qj ≥ qj′ for j < j′.

An allocation vector is an n-tuple X = (X1, . . . , Xn), where Xi ⊆ M , with
|Xi| ∈ {0, di},

∑
i∈N |Xi| ≤ m and Xi ∩Xi′ = ∅ for each i 6= i′ ∈ N , is the set

of items sold to buyer i. A price vector is an m-tuple p = (p1, . . . , pm), where
pj > 0 is the price of item j. An outcome of the market is a pair (X,p).

Given an outcome (X,p), we denote with uij(p) = vij − pj the utility that
buyer i gets when she is sold item j and with ui(X,p) =

∑
j∈Xi

uij(p) the
overall utility of buyer i in (X,p). When the outcome (or the price vector) is
clear from the context, we simply write ui and uij . An outcome (X,p) is feasible
if ui ≥ 0 for each i ∈ N .

We denote with M(X) =
⋃

i∈N Xi the set of items sold to some buyer accord-
ing to the allocation vector X. We say that a buyer i is a winner if Xi 6= ∅ and
we denote with W (X) the set of all the winners in X. For an item j ∈ M(X),
we denote with bX(j) the buyer i ∈ W (X) such that j ∈ Xi, while, for an item
j /∈ M(X), we define bX(j) = 0. Moreover, for a winner i ∈ W (X), we denote
with fX(i) = min{j ∈ M : j ∈ Xi} the best-quality item in Xi. Also in this case,
when the allocation vector is clear from the context, we simply write b(j) and
f(i). Finally, we denote with β(X) = max{i ∈ N : i ∈ W (X)} the maximum in-
dex of a winner in X. An allocation vectorX is monotone if minj∈Xi

{qj} ≥ qf(i′)
for each i, i′ ∈ W (X) with vi > vi′ , that is, all the items of i are of quality greater
of equal to the one of all the items of i′.

Definition 1. A feasible outcome (X,p) is an envy-free outcome if, for each

buyer i ∈ N , ui ≥
∑

j∈T uij for each T ⊆ M of cardinality di.

Notice that, by definition, an outcome (X,p) is envy-free if and only if the
following three conditions holds:

1. ui ≥ 0 for each i ∈ N ,
2. uij ≥ uij′ for each i ∈ W (X), j ∈ Xi and j′ /∈ Xi,
3.
∑

j∈T uij ≤ 0 for each i /∈ W (X) and T ⊆ M of cardinality di.

Note also that, as already remarked, envy-free solutions always exist, since the
outcome (X,p) such that Xi = ∅ for each i ∈ N and pj = ∞ for each j ∈ M is
envy-free. Moreover, deciding whether an outcome is envy-free can be done in
polynomial time.

By the definition of envy-freeness, if i ∈ W (X) is a winner, then all the buyers
i′ with vi′ > vi and di′ ≤ di must be winners as well, otherwise i′ would envy a
subset of the bundle assigned to i. This motivates the following definition, which
restricts to instances not containing buyers not being a priori able to receive any
item (useless buyers).



Definition 2. An instance I is proper if, for each buyer i ∈ N , it holds di +∑
i′|vi′>vi,di′≤di

di′ ≤ m.

The (market) revenue generated by an outcome (X,p) is defined as
rev(X,p) =

∑
j∈M(X) pj . RMPSD asks for the determination of an envy-free

outcome of maximum revenue. We observe that it is possible to efficiently check
if an instance is proper, and if discarding useless buyers is allowed, an instance
can be made proper in polynomial time, without worsening the value of its op-
timal solution. An instance of the RMPSD problem can be modeled as a triple
(V,D,Q), where V = (v1, . . . , vn) and D = (d1, . . . , dn) are the vectors of buy-
ers’ values and demands, while Q = (q1, . . . , qm) is the vector of item qualities.
We conclude this section with three lemmas describing some properties that need
to be satisfied by any envy-free outcome.

Lemma 1 ([7]). If an outcome (X,p) is envy-free, then X is monotone.

Proof. Let (X,p) be an envy-free outcome and assume, for the sake of contra-
diction, that X is not monotone, i.e., that there exist two buyers i, i′ ∈ W (X)
with vi > v′i and two items j ∈ Xi and j′ ∈ Xi′ such that qj < qj′ . By the envy-
freeness of (X,p), it holds uij ≥ uij′ which implies pj − pj′ ≤ vi(qj − qj′ ) and
ui′j′ ≥ ui′j which implies pj − pj′ ≥ vi′(qj − qj′ ). By dividing both inequalities

by qj − qj′ < 0, we get vi′ ≥
pj−pj′

qj−qj′
and vi ≤

pj−pj′

qj−qj′
which implies vi ≤ vi′ , a

contradiction. ⊓⊔

Given an outcome (X,p), an item j ∈ Xi is overpriced if uij < 0.

Lemma 2 ([7]). Let (X,p) be an envy-free outcome. For each overpriced item

j′ ∈ M(X), it holds b(j′) = β(X).

Proof. Let (X,p) be an envy-free outcome and assume, for the sake of contra-
diction, that there exists an overpriced item j ∈ Xi with i < β(X). Hence, uij =
vij−pj < 0. Since β(X) ∈ W (X) and (X,p) is feasible, it holds uβ(X) ≥ 0 which
implies that there exists an item j′ ∈ Xβ(X) such that uβ(X)j′ = vβ(X)j′ −pj′ ≥ 0.
Moreover, by the envy-freeness of (X,p), it also holds uij ≥ uij′ . By using
vi ≥ vβ(X), we get uij ≥ uij′ = viqj′ − pj′ ≥ vβ(X)qj′ − pj′ = uβ(X)j′ ≥ 0, which
contradicts the assumption that uij < 0. ⊓⊔

The following lemma establishes that, if a buyer i is not a winner, then the
total number of items assigned to buyers with valuation strictly smaller than vi
is less than di.

Lemma 3. Let (X,p) be an envy-free outcome. For each buyer i such that i /∈
W (X), it holds di >

∑
k>i:k∈W (X) dk.

Proof. Let (X,p) be an envy-free outcome and let i, i′ be two buyers such that
vi > vi′ , i /∈ W (X) and i′ ∈ W (X). Assume, for the sake of contradiction, that
di ≤

∑
k>i:k∈W (X) dk. This implies that there exists T ⊆ M , of cardinality di,

such that all items j ∈ T are assigned to buyers with values of at most vi and



at least one item j′ ∈ T is assigned to buyer i′. Moreover, since uk ≥ 0 for
each k ∈ W (X) by the feasibility of (X,p), there exists one such T for which
ui′j′ +

∑
j∈T\{j′} ub(j)j ≥ 0. Hence, we obtain

∑

j∈T

uij = uij′ +
∑

j∈T\{j′}

uij > ui′j′ +
∑

j∈T\{j′}

ub(j)j ≥ 0,

where the strict inequality follows from the fact that vi > vi′ and vi ≥ vb(j) for
each j ∈ T \ {j′}. Thus, since there exists a set of items T of cardinality di such
that

∑
j∈T uij > 0, it follows that (X,p) is not envy-free, a contradiction. ⊓⊔

3 A Pricing Scheme for Monotone Allocation Vectors

Since we are interested only in envy-free outcomes, by Lemma 1, in the following
we will implicitly assume that any considered allocation vector is monotone.

We call pricing scheme a function which, given an allocation vectorX, returns
a price vector. In this section, we propose a pricing scheme for allocation vectors
which will be at the basis of our approximability and inapproximability results.
For the sake of readability, in describing the following pricing function, given X,
we assume a re-ordering of the buyers in such a way that all the winners appear
first, still in non-increasing order of vi.
For an allocation vector X, define the price vector p̃ such that, for each j ∈ M ,

p̃j =






∞ if b(j) = 0,

vb(j)qj −

β(X)∑

k=b(j)+1

(
(vk−1 − vk)qf(k)

)
otherwise.

Quite interestingly, such a scheme resembles one presented [19]. Next lemma
shows that p̃ is indeed a price vector.

Lemma 4. For each j ∈ M , it holds p̃j > 0.

Proof. Clearly, the claim holds for each j such that b(j) ∈ {0, β(X)}. For each
j such that 0 < b(j) < β(X), it holds

p̃j = vb(j)qj −

β(X)∑

k=b(j)+1

(
(vk−1 − vk)qf(k)

)

= vb(j)(qj − qf(b(j)+1)) +

β(X)−1∑

k=b(j)+1

(
(qf(k) − qf(k+1))vk

)
+ vβ(X)qf(β(X))

> 0,

where the inequality holds since vβ(X)qf(β(X)) > 0 and all the other terms are
non-negative since X is monotone. ⊓⊔



We continue by showing the following important property, closely related to
the notion of envy-freeness, possessed by the outcome (X, p̃) for each allocation
vector X.

Lemma 5. For each allocation vector X, the outcome (X, p̃) is feasible and, for

each winner i ∈ W (X), ui ≥
∑

j∈T uij for each T ⊆ M of cardinality di. Thus,
the allocation is envy-free for the subset of the winners buyers.

Proof. Given an allocation vectorX, consider a winner i ∈ W (X). If i is the only
winner in W (X), it immediately follows that ui ≥

∑
j∈T uij for each T ⊆ M

of cardinality di since items not assigned to i have infinite price. We prove this
claim for the case in which |W (X)| > 1 by showing that, for each j, j′ ∈ M such
that j ∈ Xi and j′ /∈ Xi, it holds uij ≥ uij′ .

To this aim, consider an item j′ such that 0 < b(j′) < i = b(j) (whenever it
exists). It holds

uij − uij′ = viqj − p̃j − viqj′ + p̃j′

= viqj − vb(j)qj +

β(X)∑

k=b(j)+1

(
(vk−1 − vk)qf(k)

)

−viqj′ + vb(j′)qj′ −

β(X)∑

k=b(j′)+1

(
(vk−1 − vk)qf(k)

)

= vb(j′)qj′ − viqj′ +

β(X)∑

k=i+1

(
(vk−1 − vk)qf(k)

)
−

β(X)∑

k=b(j′)+1

(
(vk−1 − vk)qf(k)

)

= (vb(j′) − vi)qj′ −
i∑

k=b(j′)+1

(
(vk−1 − vk)qf(k)

)

≥ (vb(j′) − vi)qj′ −
i∑

k=b(j′)+1

((vk−1 − vk)qj′ )

= (vb(j′) − vi)qj′ − (vb(j′) − vi)qj′

= 0,

where the second equality comes from i = b(j) and the inequality follows from
the monotonicity of X.



Now consider an item j′ such that b(j′) > i = b(j) (whenever it exists).
Similarly as above, it holds

uij − uij′ = viqj − p̃j − viqj′ + p̃j′

= vb(j′)qj′ − viqj′ +

β(X)∑

k=i+1

(
(vk−1 − vk)qf(k)

)
−

β(X)∑

k=b(j′)+1

(
(vk−1 − vk)qf(k)

)

= (vb(j′) − vi)qj′ +

b(j′)∑

k=i+1

(
(vk−1 − vk)qf(k)

)

≥ (vb(j′) − vi)qj′ +

b(j′)∑

k=i+1

((vk−1 − vk)qj′ )

= (vb(j′) − vi)qj′ + (vi − vb(j′))qj′

= 0,

where the inequality follows from the monotonicity of X and the fact that qj′ ≤
qf(b(j′)) by the definition of fX.

Finally, for any item j′ with bj′ = 0, for which it holds p̃j′ = ∞, uij ≥ uij′

trivially holds.
Thus, in order to conclude the proof, we are just left to show that ui ≥ 0 for

each i ∈ W (X). To this aim, note that, for each j′ ∈ Xβ(X), it holds uβ(X)j′ = 0
by definition of p̃, which yields uβ(X) = 0. Let j′ be any item belonging to
Xβ(X). Since, as we have shown, for each buyer i ∈ W (X) and item j ∈ Xi,
it holds uij ≥ uij′ , it follows that ui =

∑
j∈Xi

(viqj − p̃j) ≥ di(viqj′ − p̃j′) ≥
di(vβ(X)qj′ − p̃j′ ) = diuβ(X)j′ = 0 and this concludes the proof. ⊓⊔

4 Results for Generic Instances

In this section, we show that it is hard to approximate the RMPSD to a factor
O(m1−ǫ) for any ǫ > 0, even when considering related valuations, whereas a
simple m-approximation algorithm can be designed for unrelated valuations.

4.1 Inapproximability Result

For an integer k > 0, we denote with [k] the set {1, . . . , k}. Recall that an instance
of the Partition problem is made up of k strictly positive numbers q1, . . . , qk
such that

∑
i∈[k] qi = Q, where Q > 0 is an even number. It is well-known that

deciding whether there exists a subset J ⊂ [k] such that
∑

i∈J qi = Q/2 is an NP-
complete problem. The inapproximability result that we derive in this subsection
is obtained through a reduction from a specialization of the Partition problem,
that we call Constrained Partition problem, which we define in the following.

An instance of the Constrained Partition problem is made up of an even num-
ber k of non-negative numbers q1, . . . , qk such that

∑
i∈[k] qi = Q, where Q is



an even number and 3
2 mini∈[k]{qi} ≥ maxi∈[k]{qi}. In this case, we are asked

to decide whether there exists a subset J ⊂ [k], with |J | = k/2, such that∑
i∈J qi = Q/2.

Lemma 6. The Constrained Partition problem is NP-complete.

Proof. Let I = {q1, . . . , qk} be an instance of the Partition problem and denote
with qmin = mini∈[k]{qi} and qmax = maxi∈[k]{qi}. We construct an instance
I ′ = {q′1, . . . , q

′
k′} of the Constrained Partition problem as follows: set k′ = 2k,

then, for each i ∈ [k], set q′i = qi + 2qmax, while, for each k + 1 ≤ i ≤ k′,
set q′i = 2qmax. It is easy to see that, by construction, it holds that k′ is an
even number, 3

2 mini∈[k′]{q
′
i} ≥ 3qmax = maxi∈[k′]{q

′
i} and that

∑
i∈[k′ ] q

′
i =∑

i∈[k] qi + 2k′qmax = Q + 2k′qmax is an even number, so that I ′ is a valid
instance of the Constrained Partition problem.

In order to show the claim, we have to prove that there exists a positive
answer to I if and only if there exists a positive answer to I ′.

To this aim, let J ⊂ [k], with
∑

i∈J qi = Q/2, be a positive answer to I. Let
J ′ ⊆ {k + 1, . . . , k′}, with |J ′| = k − |J |, be any set of k − |J | numbers of value
2qmax. Note that, by the definition of k′ and the fact that |J | < k, J ′ 6= ∅. We
claim that the set J ∪ J ′ is a positive answer to I ′. In fact, it holds |J ∪ J ′| = k
and

∑
i∈J∪J′ q′i =

∑
i∈J (qi + 2qmax) + 2qmax(k − |J |) = Q/2 + k′qmax.

Now, let J ′ ⊂ [k′], with
∑

i∈J′ q′i = Q/2 + k′qmax, be a positive answer to

I ′. Note that, since k′ = 2k, it holds
∑k′

i=k+1 q
′
i = k′qmax. Hence, since Q > 0,

there must exist at least one index i ∈ J ′ such that i ∈ [k]. Let J = {i ∈ J ′ : i ∈
[k]} 6= ∅ be the set of all such indexes. We claim that J is a positive answer to
I. In fact, it holds

∑
i∈J qi =

∑
i∈J′ q′i − k′qmax = Q/2. ⊓⊔

We can now proceed to show our first inapproximability result, by means
of the following reduction. Given an integer k ≥ 3, consider an instance I of
the Constrained Partition problemwith 2(k− 1) numbers q1, . . . , q2(k−1) such that
∑2(k−1)

i=1 qi = Q and define qmin = mini∈[2(k−1)]{qi}. Remember that, by defi-

nition, Q is even and it holds 3
2qmin ≥ maxi∈[2(k−1)]{qi}. Note that, this last

property, together with Q ≥ 2(k−1)qmin, implies that qj ≤
3Q

4(k−1) < Q
2 for each

j ∈ [2(k − 1)] since k ≥ 3.

For any ǫ > 0, define α =
⌈
2
ǫ

⌉
+ 1 and λ = kα. Note that, by definition,

λ ≥ k2. We create an instance I ′ of the RMPSD as follows. There are n = 5
buyers and m = λ + k − 1 items divided into four groups: k items of quality
Q, one item of quality Q/2, 2(k − 1) items of qualities qi, with i ∈ [2(k − 1)],
inherited from I, and λ− 2k items of quality q := qmin

100 > 0. The five buyers are

such that v1 = 2 and d1 = k, v2 = 1+ 1
λ

Q−2kq+kQ(λ+1)/2
Qk+Q−2kq+λq and d2 = λ, v3 = 1+ 1

λ

and d3 = k, v4 = 1 + 1
λ

Q−kq
Q+(λ−2k)q and d4 = λ− k, v5 = 1 and d5 = λ− 2k.

Note that it holds vi > vi+1 for each i ∈ [4]. In fact, v4 > 1 = v5, since
λ > 2k and Q ≥ 2(k − 1)qmin = 200(k − 1)q > kq for k ≥ 2. Moreover,
v4 < 1+ 1

λ , since λ > k implies Q−kq < Q+(λ−2k)q. Finally, v2 > 1+ 1
λ , since



λ > 2 = kQ
k(Q−Q/2) > kQ

kQ−2q implies Q− 2kq+ kQ(λ+1)
2 > Qk+Q− 2kq+λq and

v2 < 2 = v1, since λ > k
2 +1 implies Q− 2kq+ kQ(λ+1)

2 < λ(Qk+Q− 2kq+λq).
Our aim is to show that, if there exists a positive answer to I, then there

exists an envy-free outcome for I ′ of revenue at least (λ−2k)q, while, if a positive
answer to I does not exists, then no envy-free outcome of revenue greater than
6(k + 3)(k − 1)qmin can exist for I ′.

Lemma 7. If there exists a positive answer to I, then there exists an envy-free

outcome for I ′ of revenue greater than (λ− 2k)q.

Proof. Consider the allocation vector X such that X1 is made up of k items of
quality Q, X3 contains the item of quality Q/2 plus the k − 1 items forming
a positive answer to I, X5 is made up of the λ − 2k items of quality q and
X2 = X4 = ∅. Note that X is monotone. We show that the outcome (X, p̃) is
envy-free.

According to the price vector p̃, it holds p̃j = (3λ+1)Q−2q
2λ for each j ∈ X1,

p̃j =
(λ+1)qj−q

λ for each j ∈ X3 and p̃j = q for each j ∈ X5.
Because of Lemma 5, in order to show that (X, p̃) is envy-free, we only need

to prove that, for each buyer i /∈ W (X) and T ⊆ M with |T | = di, it holds∑
j∈T uij ≤ 0. Note that the buyers not belonging to W (X) are buyers 2 and 4.
For buyer 2, since there are exactly λ items having a non-infinite price, it

follows that T = X1 ∪ X3 ∪X5 is the only set of items of cardinality d2 which
can give buyer 2 a non-negative utility. It holds

∑

j∈T

(v2qj − p̃j)

=
(
1 + 1

λ

Q−2kq+ kQ
2

(λ+1)

Qk+Q−2kq+λq

)
(kQ+Q+ (λ − 2k)q)

−k((3λ+1)Q−2q)
2λ − (λ+1)Q−kq

λ − (λ− 2k)q
= 0.

For buyer 4, for each pair of items (j, j′) with j ∈ X1 and j′ ∈ X3, it holds
u4j < u4j′ , while, for each pair of items (j′, j′′) with j′ ∈ X3 and j′′ ∈ X5, it
holds u4j′ < u4j′′ . In fact, we have

u4j′ − u4j = v4qj − v4Q− qj

(
1 +

1

λ

)
+

Q

2

(
3 +

1

λ

)

>
1

λ

(
Q

2
− qj

)

≥ 0,

where the first inequality follows from 1 < v4 < 3/2 and the second one follows
from qj ≤ Q/2 for each j ∈ X3; and

u4j′′ − u4j′ = v4q − q − v4qj + qj +
qj
λ

−
q

λ

= (qj − q)

(
1 +

1

λ
− v4

)

> 0,



where the inequality follows from v4 < 1 + 1/λ and qj > q for each j ∈ X3.
Hence, the set of items of cardinality d4 which gives the highest utility to

buyer 4 is T = X3 ∪X5. It holds

∑

j∈T

(v4qj − p̃j)

=
(
1 + 1

λ
Q−kq

Q+q(λ−2k)

)
(Q + (λ− 2k)q)− (λ+1)Q−kq

λ − (λ − 2k)q

= 0.

Thus, we can conclude that the outcome (X, p̃) is envy-free and it holds
rev(X, p̃) > (λ− 2k)q. ⊓⊔

Now we stress the fact that, in any envy-free outcome (X,p) for I ′ such that
rev(X,p) > 0, it must be X1 6= ∅. In fact, assume that there exists an envy-free
outcome (X,p) such that X1 = ∅ and Xi 6= ∅ for some 2 ≤ i ≤ 5, then, since
d1 ≤ di and v1 > vi for each 2 ≤ i ≤ 5, it follows that there exists a subset of d1
items T such that u1 > ui ≥ 0, which contradicts the envy-freeness of (X,p). As
a consequence of this fact and of the definition of the demand vector, it follows
that each possible envy-free outcome (X,p) for I ′ can only fall into one of the
following three cases:

1. X1 6= ∅ and Xi = ∅ for each 2 ≤ i ≤ 5,
2. X1, X3 6= ∅ and X2, X4, X5 = ∅,
3. X1, X3, X5 6= ∅ and X2, X4 = ∅.

Note that, for each envy-free outcome (X,p) falling into one of the first two
cases, it holds rev(X,p) ≤ v1kQ+v3

3
2Q ≤ Q(2k+3) ≤ (2k+3)2(k−1)32qmin =

6(k+3)(k−1)qmin. In the remaining of this proof, we will focus only on outcomes
falling into case (3).

First of all, we show that, if any such an outcome is envy-free, then the sum
of the qualities of the items assigned to buyer 3 cannot exceed Q.

Lemma 8. In any envy-free outcome (X,p) falling into case (3), it holds∑
j∈X3

qj ≤ Q.

Proof. Let (X,p) be an envy-free outcome falling into case (3) and assume, for
the sake of contradiction, that

∑
j∈X3

> Q. Note that, in this case, because of
Lemma 1 and the fact that no subset of k items inherited from I can sum a total
quality greater than Q, X3 must contain the item of quality Q/2 and X1 must
contain all items of quality Q.

By the feasibility of (X,p), it holds u5 ≥ 0 which implies that there exists one
item j′ ∈ X5 such that pj′ ≤ qj′ . Moreover, by the envy-freeness of (X,p), for
each j ∈ X3, it holds u3j =

λ+1
λ qj−pj ≥ u3j′ =

λ+1
λ qj′ −pj′ ≥

λ+1
λ qj′ −qj′ =

qj′

λ

which implies pj ≤
λ+1
λ qj −

qj′

λ ≤ λ+1
λ qj −

q
λ for each j ∈ X3. Let j

′′ denote the

item of quality Q/2. Since j′′ ∈ X3, it follows that pj′′ ≤
λ+1
λ

Q
2 − q

λ . Again, by
the envy-freeness of (X,p), for each j ∈ X1, it holds u1j = 2Q − pj ≥ u1j′′ =

Q− pj′′ ≥ Q− λ+1
λ

Q
2 + q

λ which implies pj ≤
3Qλ+Q−2q

2λ .



Define T = X1∪X3∪X5 and let us compute the utility that buyer 2 achieves
if she is assigned set T such that |T | = λ = d2. It holds

u2 =
∑

j∈T

(v2qj − pj)

= v2
∑

j∈X5

qj −
∑

j∈X5

pj + v2
∑

j∈X3

qj −
∑

j∈X3

pj + v2
∑

j∈X1

qj −
∑

j∈X1

pj

≥
(

1
λ

Q−2kq+ kQ
2

(λ+1)

Q+(λ−2k)q

) ∑

j∈X5

qj + (v2 − v3)
∑

j∈X3

qj +
kq
λ + k

(
v2Q− 3Qλ+Q−2q

2λ

)

>
(λ−2k)(Q−2kq+ kQ

2
(λ+1))

λ(Q+(λ−2k)q) + (Qk(λ−1)−2λq)Q
2λ(Q(k+1)+(λ−2k)q) +

kq
λ + k

(
v2Q− 3Qλ+Q−2q

2λ

)

= 0,

where the first inequality comes from the fact that, for each j ∈ X1, it holds
qj = Q and pj ≤

3Qλ+Q−2q
2λ , the fact that u5 ≥ 0 implies

∑
j∈X5

qj ≥
∑

j∈X5
pj

and the fact that pj < λ+1
λ qj −

q
λ for each j ∈ X3, while the second inequality

comes from the fact that
∑

j∈X5
qj ≥ (λ− 2k)q and

∑
j∈X3

qj > Q.

Hence, since there exists a subset of d2 items for which buyer 2 gets a strictly
positive utility and buyer 2 is not a winner in X, it follows that the outcome
(X,p) cannot be envy-free, a contradiction. ⊓⊔

On the other hand, we also show that, for any envy-free outcome (X,p)
falling into case (3), the sum of the qualities of the items assigned to buyer 3
cannot be smaller than Q.

Lemma 9. In any envy-free outcome (X,p) falling into case (3), it holds∑
j∈X3

qj ≥ Q.

Proof. Let (X,p) be an envy-free outcome falling into case (3) and assume, for
the sake of contradiction, that

∑
j∈X3

< Q.

By the feasibility of (X,p), it holds u5 ≥ 0 which implies that there exists one
item j′ ∈ X5 such that pj′ ≤ qj′ . Moreover, by the envy-freeness of (X,p), for
each j ∈ X3, it holds u3j =

λ+1
λ qj−pj ≥ u3j′ =

λ+1
λ qj′ −pj′ ≥

λ+1
λ qj′ −qj′ =

qj′

λ

which implies pj ≤
λ+1
λ qj −

qj′

λ ≤ λ+1
λ qj −

q
λ for each j ∈ X3.

Define T = X3 ∪X5 and let us compute the utility that buyer 4 achieves if
she is assigned set T such that |T | = λ− k = d4. It holds

u4 =
∑

j∈T

(v4qj − pj)

= v4
∑

j∈X5

qj −
∑

j∈X5

pj + v4
∑

j∈X3

qj −
∑

j∈X3

pj

≥
(

1
λ

Q−kq
Q+(λ−2k)q

) ∑

j∈X5

qj + (v4 − v3)
∑

j∈X3

qj +
kq
λ

> (λ−2k)(Q−kq)q
λ(Q+(λ−2k))q − Q(λ−k)q

λ(Q+(λ−2k)q) +
kq
λ

= 0



where the first inequality comes from the fact that u5 ≥ 0 implies
∑

j∈X5
qj ≥∑

j∈X5
pj and the fact that pj ≤ λ+1

λ qj −
q
λ for each j ∈ X3, while the second

inequality comes from the fact that
∑

j∈X5
qj ≥ (λ− 2k)q and

∑
j∈X3

qj < Q.
Hence, since there exists a subset of d4 items for which buyer 4 gets a strictly

positive utility and buyer 4 is not a winner in X, it follows that the outcome
(X,p) cannot be envy-free, a contradiction. ⊓⊔

As a consequence of Lemmas 8 and 9, it follows that there exists an envy-
free outcome (X,p) falling into case (3) only if

∑
j∈X3

qj = Q. Since, as we have
already observed, in such a case the item of quality Q/2 has to belong to X3, it
follows that there exists an envy-free outcome (X,p) falling into case (3) only if
there are k− 1 items inherited from I whose sum is exactly Q/2, that is, only if
I admits a positive solution.

Any envy-free outcome not falling into case (3) can raise a revenue of at
most 6(k+ 3)(k − 1)qmin. Hence, if there exists a positive answer to I, then, by
Lemma 7, there exists a solution to I ′ of revenue greater than (λ− 2k)q, while,
if there is no positive answer to I, then there exists no solution to I ′ of revenue
more than 6(k + 3)(k − 1)qmin.

Thus, if there exists an r-approximation algorithm for the RMPSD with

r ≤ (λ−2k)qmin

600(k+3)(k−1)qmin
, it is then possible to decide in polynomial time the Con-

strained Partition problem, thus implying P = NP. Since, by the definition of
α, λ−2k

600(k+3)(k−1) = O
(
kα−2

)
= O

(
m1−2/α

)
and m1−ǫ < m1−2/α, the following

theorem holds.

Theorem 1. For any ǫ > 0, the RMPSD cannot be approximated to a factor

O(m1−ǫ) unless P = NP.

We stress that this inapproximability result heavily relies on the presence of
two useless buyers, namely buyers 2 and 4, who cannot be winners in any envy-
free solution. This situation suggests that better approximation guarantees may
be possible for proper instances, as we will show in the next section.

4.2 The Approximation Algorithm

In this subsection, we design a simple m-approximation algorithm for the gen-
eralization of the RMPSD in which the buyers have unrelated valuations. The
inapproximability result given in Theorem 1 shows that, asymptotically speak-
ing, this is the best approximation one can hope for unless P = NP.

For each i ∈ N , let Ti = argmaxT⊆M :|T |=di

{∑
j∈T vij

}
be the set of the di

best items for buyer i and define Ri =
(∑

j∈Ti
vij

)
/di. Let i

∗ be the index of the

buyer with the highest value Ri. Consider the algorithm best which returns the
outcome (X,p) such that Xi∗ = Ti∗ , Xi = ∅ for each i 6= i∗, pj = Ri∗ for each
j ∈ Ti∗ and pj = ∞ for each j /∈ Ti∗ . It is easy to see that the computational
complexity of Algorithm best is O(nm).



Theorem 2. Algorithm best returns an m-approximate solution for the RMPSD

with unrelated valuations.

Proof. It is easy to see that the outcome (X,p) returned by Algorithm best is
feasible.In order to prove that it is also envy-free, we just need to show that, for
each buyer i 6= i∗ with di ≤ di∗ and each Ti ⊆ Ti∗ of cardinality di, it holds∑

j∈Ti
(vij − pj) ≤ 0. Assume, for the sake of contradiction, that there exists a

set Ti of cardinality di such that
∑

j∈Ti
(vij − pj) > 0.

We obtain 0 <
∑

j∈Ti
(vij − pj) =

∑
j∈Ti

vij − diRi∗ ≤ diRi − diRi∗ =

di(Ri−Ri∗) which implies Ri > Ri∗ , a contradiction. Hence, (X,p) is envy-free.
As to the approximation guarantee, note that rev(X,p) = di∗Ri∗ ≥ Ri∗ .

The maximum possible revenue achievable by any outcome (X,p), not even an
envy-free one, is at most

∑
i∈N

∑
j∈Xi

vij ≤
∑

i∈W (X)(diRi) ≤ mRi∗ , which
yields the claim. ⊓⊔

5 Results for Proper Instances

Given a proper instance I = (V,D,Q), denote with δ the number of different
values in V and, for each k ∈ [δ], let Ak ⊆ N denote the set of buyers with the
kth highest value and v(Ak) denote the value of all buyers in Ak. For k ∈ [δ],

define A≤k =
⋃k

h=1 Ah, A≥k =
⋃δ

h=k Ah, A>k = A≥k \Ak and A<k = A≤k \Ak,
while, for each subset of buyers A ⊆ N , define d(A) =

∑
i∈A di. Let δ∗ ∈ [δ]

be the minimum index such that d(A≤δ∗) > m and let Ã ⊂ Aδ∗ be a subset of
buyers in Aδ∗ such that

Ã = argmaxA⊂Aδ∗ :d(A)+d(A<δ∗)≤m {d(A)} .

In other words Ã is the subset of buyers in Aδ∗ that feasibly extends A<δ∗ (i.e.,

such that the sum of the requested items of buyers in A<δ∗ ∪ Ã is at most m)
and maximizes the number of allocated items.

Note that any instance I for which δ∗ does not exist can be suitably extended
with a dummy buyer n + 1, such that vn+1 < vn and dn+1 = m + 1, which is
equivalent in the sense that it does not change the set of envy-free outcomes of
I. Hence, in this section, we will always assume that δ∗ is well-defined for each
proper instance of the RMPSD.

For our purposes we need to break ties among values of the buyers in Aδ∗ in
such a way that each buyer in Ã comes before any buyer in Aδ∗ \ Ã. In order

to achieve this task, we need to explicitly compute the set of buyers Ã. Such a
computation can be done by reducing this problem to the knapsack problem. It is
easy to see that, in this case, the well-known pseudo-polynomial time algorithm
for knapsack is polynomial in the dimensions of I, as di ≤ m for every i ∈ N .

Because of the above discussion, from now on we can assume that ties among
values of the buyers in Aδ∗ are broken in such a way that each buyer in Ã comes
before any buyer in Aδ∗ \ Ã. For each k ∈ [δ∗], define

α(k) =

{
max{i ∈ Ak} if k ∈ [δ∗ − 1],

max{i ∈ Ã} if k = δ∗.



By the definition of δ∗ and Ã and by the tie breaking rule imposed on the buyers

in Aδ∗ , it follows that
∑α(k)

i=1 di ≤ m for each k ∈ [δ∗].
We say that an allocation vector X is an h-prefix of I, with h ∈ [α(δ∗)], if X

is monotone and i ∈ W (X) if and only if i ∈ [h].

5.1 Computing an h-Prefix of I of Maximum Revenue

Let X be an h-prefix of I. We show that (X, p̃) is an envy-free outcome.

Lemma 10. The outcome (X, p̃) is envy-free.

Proof. Since X is monotone, by exploiting Lemma 5, we only need to prove that
for each buyer i /∈ W (X) and set T ⊆ M of cardinality di, it holds

∑
j∈T uij ≤ 0.

Note that i /∈ W (X) if and only if i > h.
For each i > h, it holds vi ≤ vh. Moreover, for each j such that b(j) = h, it

holds uhj = 0. Since, because of Lemma 5, uhj ≥ uhj′ for any item j′ ∈ M(X),
it follows that uhj′ = vhqj′ − p̃j′ ≤ 0 for each j′ ∈ M(X). Hence, for each
j′ ∈ M(X), it holds uij′ = viqj′ − p̃j′ ≤ vhqj′ − p̃j′ ≤ 0 and this concludes the
proof. ⊓⊔

Given an allocation vector X, for each i ∈ [δ], denote with Mi(X) = {j ∈
M(X) : vb(j) = v(Ai)} the set of items allocated to the buyers with the ith
highest value inV. Recall that, sinceX is an h-prefix of I, it holds β(X) = h. The
following lemma gives a lower bound on the revenue generated by the outcome
(X, p̃).

Lemma 11. rev(X, p̃) ≥ vh
∑

j∈Mh(X) qj.

Proof. By the definition of p̃, it follows that rev(X, p̃) ≥
∑

j∈Mh(X) p̃j =

vh
∑

j∈Mh(X) qj . ⊓⊔

We now prove a very important result stating that the price vector p̃ is the
best one can hope for when overpricing is not allowed. Such a result, of indepen-
dent interest, plays a crucial role in the proof of the approximation guarantee of
the algorithm we define in this section.

Lemma 12. Let X be an h-prefix of I. Then (X, p̃) is an optimal envy-free

outcome when overpricing is not allowed.

Proof. It is easy to see that the price vector p̃ does not overprice any item in
M(X). For any envy-free outcome (X,p), we show by backward induction that
pj ≤ p̃j for each j ∈ M(X).

As a base case, for all j ∈ Mh(X), it holds pj ≤ vhqj = p̃j because p cannot
overprice any item.

For the inductive step, consider an item j such that b(j) = i < h and assume
the claim true for each item j′ such that b(j′) > i. By the envy-freeness of (X,p),



it holds uij − uij′ ≥ 0 for j′ = f(i+ 1). This implies

0 ≤ uij − uij′

= viqj − pj − viqj′ + pj′

≤ viqj − pj − viqj′ + p̃j′ ,

where the last inequality comes from the inductive hypothesis. Hence, we can
conclude that

pj ≤ vi(qj − qj′) + p̃j′

= vi(qj − qj′) + vb(j′)qj′ −
h∑

k=b(j′)+1

((vk−1 − vk)qf(k))

= vi(qj − qf(i+1)) + vi+1qf(i+1) −
h∑

k=i+2

((vk−1 − vk)qf(k))

= viqj −
h∑

k=i+1

((vk−1 − vk)qf(k))

= p̃j ,

where the second equality comes from j′ = f(i + 1) and b(j′) = i + 1. This
completes the induction and shows the claim. ⊓⊔

We design a polynomial time algorithm ComputePrefix which, given a proper
instance I and a value h ∈ [α(δ∗)], outputs the h-prefixX∗

h such that the outcome
(X∗

h, p̃) achieves the highest revenue among all possible h-prefixes of I.

Recall that, by definition of h-prefixes of I, the set of buyers whose demand is
to be satisfied is exactly characterized. Moreover, once fixed a set of items which
exactly satisfies the demands of the considered buyers, by the monotonicity of
h-prefixes of I, we know exactly which items must be assigned to each buyer.
Hence, in this setting, our task becomes that of determining the set of items
maximizing the value rev(X, p̃).



To this aim, we first show that this problem reduces to that of determining,
for each i ∈ [h], the item f(i). In fact, it holds

rev(X, p̃) =
∑

j∈M(X)

p̃j

=
∑

i∈[h]

∑

j∈Xi

(
viqj −

h∑

k=i+1

(
(vk−1 − vk)qf(k)

)
)

=
∑

i∈[h]


vi

∑

j∈Xi

qj


−

∑

i∈[h]

(
di

h∑

k=i+1

(
(vk−1 − vk)qf(k)

)
)

=
∑

i∈[h]


vi

∑

j∈Xi

qj




︸ ︷︷ ︸
T1

−
h∑

i=2

(
(
(vi−1 − vi)qf(i)

) i−1∑

k=1

dk

)

︸ ︷︷ ︸
T2

.

Note that only those items j such that j = f(i) for some i ∈ [h] contribute to
the term T2 and that the per quality contribution of each item to the term T1

is always strictly positive. This implies that, once fixed all the items j such that
j = f(i) for each i ∈ [h], the remaining di − 1 items to be assigned to buyer i in
each optimal outcome are exactly the items j + 1, . . . , j + di − 1.

Because of the above discussion, we are now allowed to concentrate only on
the problem of determining the set of best-quality items assigned to each buyer in
[h] in an optimal envy-free outcome. Let us denote with rij the maximum revenue
which can be achieved by an envy-free outcome in which the best-quality item of
the first i buyers have been chosen among the first j ones. Hence, rij is defined

for 0 ≤ i ≤ h and
∑i−1

k=1 dk + 1 ≤ j ≤ m + 1 −
∑h

k=i dk and has the following
expression:

rij =





0 if i = 0,

tiqj +

j+di−1∑

k=j+1

viqk if i > 0 ∧ j =

i−1∑

k=1

dk + 1,

max{ri−1,j−1 + tiqj ; ri,j−1}+

j+di−1∑

k=j+1

viqk if i > 0 ∧ j >

i−1∑

k=1

dk + 1,

where ti = vi − (vi−1 − vi)
∑i−1

k=1 dk is the contribution that item f(i) gives
to the revenue per each unit of quality. Clearly, by definition, rh,m+1−dh

gives
the maximum revenue which can be achieved by an envy-free outcome (X, p̃)
such that W (X) = [h]. Such a quantity, as well as the allocation vector X∗

h

realizing it, can be computed by the following dynamic programming algorithm
of complexity O(mh).

ComputePrefix(input: instance I, integer h, output: allocation vector X∗
h):

for each i = 0, . . . , h do rij := 0;



for each i = 1, . . . , h do
| rij := ti · qj where j =

∑i−1
k=1 dk + 1;

| fi := j;
for each i = 1, . . . , h do
| for each j =

∑i−1
k=1 dk + 2, . . . ,m+ 1−

∑h
k=i dk do

| | if ri,j−1 ≥ ri−1,j−1 + ti · qj then;
| | | rij := ri,j−1;
| | else
| | | ri,j := ri−1,j−1 + ti · qj ;
| | | fi := j;
for each i = 1, . . . , h do
| Xi := {fi, fi + 1, . . . , fi + di − 1};
return X∗

h = (X1, . . . , Xh);

Let X (h) be the set of all possible h-prefixes of I. As a consequence of the
analysis carried out in this subsection, we can claim the following result.

Lemma 13. For each h ∈ [α(δ∗)], the h-prefix of I X∗
h such that rev(X∗

h, p̃) =
maxX∈X (h){rev(X, p̃)} can be computed in time O(mh).

5.2 The Approximation Algorithm

Our approximation algorithm Prefix for proper instances generates a set of pre-
fixes of I for which it computes the allocation of items yielding maximum revenue
by exploiting the algorithm ComputePrefix as a subroutine. Then, it returns the
solution with the highest revenue among them.

Prefix(input: instance I, output: allocation vector X∗):
opt := ∅; value := −1;
compute Ã;
reorder the buyers in such a way that each i ∈ Ã comes before any i′ ∈ Aδ∗ \ Ã;
for each h = 1, . . . , α(δ∗) do
| X∗

h := ComputePrefix(I, h);
| if rev(X∗

h, p̃) > value then
| | opt := X∗

h; value := rev(X∗
h, p̃);

for each k = 0, . . . , δ∗ − 1 do
| for each i ∈ Ak+1 do
| | reorder the buyers in Ak+1 in such a way that i is the first buyer in Ak+1;
| | if d(A≤k)+di ≤ m then X∗

k := ComputePrefix(I, |A≤k|+1); (†)
| | if rev(X∗

k, p̃) > value then
| | | opt := X∗

k; value := rev(X∗
k, p̃);

return opt;

It is easy to see that the computational complexity of Algorithm Prefix is
O(n3m). As a major positive contribution of this work, we show that it approx-
imates the RMPSD to a factor 2 on proper instance.



Theorem 3. The approximation ratio of Algorithm Prefix is 2 when applied to

proper instances.

Proof. Let I be a proper instance and let (X,p) be its optimal envy-free outcome.
We denote with rev(Prefix) the revenue of the outcome returned by Algorithm
Prefix. The proof is divided into two cases:

Case (1): X is an h-prefix of I for some h ∈ [α(δ∗)].

Since X is an h-prefix of I, the outcome (X∗
h, p̃) has to be considered by algo-

rithm Prefix as a candidate solution. It follows that rev(Prefix) ≥ rev(X∗
h, p̃) ≥

vh
∑

j∈Mh(X∗

h
) qj by the definition of algorithm Prefix and by Lemma 11.

Now, if
∑

j∈Mh(X) pj ≥ 1
2rev(X,p), the claim directly follows since, by the

feasibility of (X,p), it holds
∑

j∈Mh(X) pj ≤ vh
∑

j∈Mh(X) qj ≤ rev(Prefix).

Hence, assume that
∑

j∈Mh(X) pj <
1
2rev(X,p).

Define i′ = max{i ∈ N : vi > vh} (note that i′ is well-defined because
of the assumption) and X′ as the i′-prefix of I such that X ′

i = Xi for each
i ∈ [i′]. By Lemma 2, it follows that (X′,p) is an outcome without overpricing.
Because of our assumption, it holds rev(X′,p) > 1

2rev(X,p) and, by Lemma 12,
it also holds rev(X′, p̃) ≥ rev(X′,p). Moreover, since X′ is an i′-prefix of I,
by the definition of algorithm Prefix and by Lemma 13, it holds rev(Prefix) ≥
rev(X∗

i′ , p̃) ≥ rev(X′, p̃) which yields the claim.

Case (2): X is not an h-prefix of I for any h ∈ [α(δ∗)].

Let i∗ = min{i ∈ N : i /∈ W (X)}. Since X is not an h-prefix of I for any
h ∈ [α(δ∗)], it follows that β(X) > i∗.

Assume that
∑i∗−1

i=1

∑
j∈Xi

pj ≥ 1
2rev(X,p) and define X′ as the (i∗ − 1)-

prefix of I such that X ′
i = Xi for each i ∈ [i∗ − 1] (note that our assump-

tion implies that (i∗ − 1)-prefixes of I do exist). By Lemma 2, it follows that
(X′,p) is an outcome without overpricing. Because of our assumption, it holds

rev(X′,p) =
∑i∗−1

i=1

∑
j∈Xi

pj ≥ 1
2rev(X,p) and, by Lemma 12, it also holds

rev(X′, p̃) ≥ rev(X′,p). Moreover, sinceX′ is an (i∗−1)-prefix of I, by the defini-
tion of algorithm Prefix and by Lemma 13, it holds rev(Prefix) ≥ rev(X∗

i∗−1, p̃) ≥
rev(X′, p̃) which yields the claim.

Hence, from now on, we assume that
∑i∗−1

i=1

∑
j∈Xi

pj <
1
2rev(X,p).

If there does not exist an i∗-prefix of I, then,
∑

i>i∗:i∈W (X) di < di∗ . Assume

that there exists a buyer i′ ∈ W (X) such that i′ < i∗ and di′ > di∗ . Clearly,
i′-prefixes of I do exist. Define X′ as the i′-prefix of I such that X ′

i = Xi for each
i ∈ [i′]. By the definition of algorithm Prefix and by Lemmas 13 and 11, it holds
rev(Prefix) ≥ rev(X∗

i′ , p̃) ≥ rev(X′, p̃) ≥ vi′
∑

j∈X′

i′
qj . On the other hand, it

holds
∑

i>i∗
∑

j∈Xi
qj < di∗qmax, where qmax = max

{
qj : j ∈

⋃
i>i∗ Xi

}
. More-

over, di∗qmax < di′
∑

j∈X′

i′
qj since di′ > di∗ and X is monotone. Hence, we



have

1

2
rev(X,p) <

∑

i>i∗:i∈W (X)

∑

j∈Xi

pj

≤
∑

i>i∗:i∈W (X)



vi
∑

j∈Xi

qj





≤
∑

i>i∗:i∈W (X)



vi∗
∑

j∈Xi

qj





< vi∗di∗qmax

< vi′di′qmax

≤ vi′
∑

j∈Xi′

qj ,

which yields the claim.
Assume that there does not exist any buyer i′ ∈ W (X) such that i′ < i∗ and

di′ > di∗ . Let k be the index such that i∗ ∈ Ak. In this case, by the definition of
proper instances, it holds that the allocation vector X′ which allocates the best-
quality items to the buyers in A<k and to i∗ is an h-prefix of I considered by Al-
gorithm Prefix at line (†) for which it holds

∑
j∈X′

i∗
qj ≥

∑
i>i∗:i∈W (X)

∑
j∈Xi

qj .

Hence, we have

1

2
rev(X,p) <

∑

i>i∗:i∈W (X)

∑

j∈Xi

pj

≤
∑

i>i∗:i∈W (X)



vi
∑

j∈Xi

qj





≤
∑

i>i∗:i∈W (X)



vi∗
∑

j∈Xi

qj





< vi∗di∗qmax

≤ vi∗
∑

j∈X′

i∗

qj ,

which yields the claim.
If i∗-prefixes of I do exist, define H = {i ∈ W (X) : vi = vi∗} and let

i′ = min{i : i ∈ H} if H 6= ∅, otherwise set i′ = i∗. Moreover, define i′′ =
min{i ∈ W (X) : i > i∗}.

If vi∗ > vβ(X), then, by Lemma 3, it holds di∗ >
∑

i>i∗:i∈W (X) di. DefineX′ as

the i∗-prefix of I such that X ′
i =

{
1 +

∑i−1
j=1 dj , . . . , di +

∑i−1
j=1 dj

}
for each i ∈

[i∗], i.e., X′ assigns the best-quality items to the first i∗ buyers. Note that the set
of buyers [i∗−1] belongs toW (X′)∩W (X). Moreover, since (X,p) is envy-free, by



Lemma 1 and the fact that X′ assigns the first g :=
∑i∗−1

i=1 di best-quality items
to the first i∗−1 buyers, it follows that

∑m
j=g+1 qj ≥

∑m
j=f(i′′) qj . This inequality,

together with di∗ >
∑

i>i∗:i∈W (X) di, implies that
∑

i>i∗:i∈W (X)

∑
j∈Xi

qj ≤∑
j∈X′

i∗
qj .

Hence,we have that

1

2
rev(X,p) <

∑

i>i∗:i∈W (X)

∑

j∈Xi

pj

≤
∑

i>i∗:i∈W (X)


vi

∑

j∈Xi

qj




<
∑

i>i∗:i∈W (X)


vi∗

∑

j∈Xi

qj




≤ vi∗
∑

j∈X′

i∗

qj

≤ vi∗
∑

j∈Mi∗ (X′)

qj

≤ rev(X′, p̃)

≤ rev(X∗
i∗ , p̃)

≤ rev(Prefix),

which yields the claim.

If vi∗ = vβ(X), with i∗ ∈ Ak for some k ∈ [δ∗], define X′ as the α(k)-prefix of

I such that X ′
i =

{
1 +

∑i−1
j=1 dj , . . . , di +

∑i−1
j=1 dj

}
for each i ∈ [α(k)]. Note that

the set of buyers [i′−1] belongs to W (X′)∩W (X). Moreover, since (X,p) is envy-

free, by Lemma 1 and the fact thatX′ assigns the first g′ :=
∑i′−1

i=1 di best-quality
items to the first i′ − 1 buyers, it follows that

∑m
j=g′+1 qj ≥

∑m
j=f(i′) qj . This

inequality, together with the fact that
∑α(k)

i=i′ di ≥
∑

A⊆Ak:d(A<k)+d(A)≤m d(A)

for each k ∈ [δ∗] which comes from the definition of δ∗ and Ã, implies that∑
i≥i′:i∈W (X)

∑
j∈Xi

qj ≤
∑α(k)

i=i′
∑

j∈X′

i
qj .



Hence,we have that

1

2
rev(X,p) <

∑

i≥i′:i∈W (X)

∑

j∈Xi

pj

≤
∑

i≥i′:i∈W (X)


vk

∑

j∈Xi

qj




=
∑

i≥i′:i∈W (X)


vi∗

∑

j∈Xi

qj




≤ vi∗

α(k)∑

i=i′

∑

j∈X′

i

qj

= vi∗
∑

j∈Mi∗ (X′)

qj

≤ rev(X′, p̃)

≤ rev(X∗
i∗ , p̃)

≤ rev(Prefix),

which yields the claim.

We conclude this section by showing that the approximation ratio achieved
by Algorithm Prefix is the best possible one for proper instances.

Theorem 4. For any 0 < ǫ ≤ 1, the RMPSD on proper instances cannot be

approximated to a factor 2− ǫ unless P = NP.

Proof. For an integer k ≥ 3, consider an instance I of the Constrained Partition

problem with 2(k − 1) numbers q1, . . . , q2(k−1) such that
∑2(k−1)

i=1 qi = Q and
define qmin = mini∈[2(k−1)]{qi} and qmax = maxi∈[2(k−1)]{qi}. Remember that,

by definition, Q is even and it holds 3
2qmin ≥ qmax. Also in this case, as observed

in the proof of Theorem 1, it holds qj < Q/2 for each j ∈ [2(k − 1)].

For any 0 < ǫ ≤ 1, define

λ = max

{
600k2;

⌈
4(k + 1)

ǫ
+

(5k + 3)(2− ǫ)Q

ǫq

⌉
− 2

}
.

We create an instance I ′ of the RMPSD as done in the proof of Theorem 1 with

the addition of a buyer 0, with v0 = (λ−2k)q
(Q+q)k and d0 = k, and k + 1 items of

quality Q+ q.



We first show that v0 > 2 = v1. It holds

v0 =
(λ− 2k)q

(Q+ q)k

>
(λ− 2k)q

(3(k − 1)qmin + q)k

=
(λ− 2k)q

(300(k − 1)q + q)k

≥
600k2 − 2k

300k2 − 299k
> 2,

where the first inequality follows from Q ≤ 2(k − 1)qmax ≤ 3(k − 1)qmin.
Moreover, note that, in the proof of Theorem 1, we only needed λ > 3k

in order to show that vi > vi+1 for each i ∈ [4]. Hence, we can conclude that
vi > vi+1 for each 0 ≤ i ≤ 4. It follows that, with the addition of buyer 0 and
the k + 1 items of quality Q+ q, the instance I ′ is now proper.

The spirit of the proof is the same of that used in the one of Theorem 1, i.e.,
we show that, if I admits a positive answer, then there exists a solution for I ′

with revenue above a certain value, while, if I admits no positive answers, then
all the solutions for I ′ must raise a revenue below a certain other value.

First of all, let us determine the set of all possible non-empty allocation vec-
tors able to yield an envy-free outcome. To this aim, we can claim the following
set of constraints which come from the fact that vi > vi+1 for each 0 ≤ i ≤ 4:

i) Since d0 ≤ di for each i ≥ 1, it must be X0 6= ∅;

ii) Since d1 ≤ di for each i ≥ 2, it must be X1 6= ∅ when
⋃5

i=2 Xi 6= ∅;
iii) Since d3 ≤ di for each i ≥ 4, it must be X3 6= ∅ when X4 ∪X5 6= ∅;
iv) Since d2 ≤ d3 + d4, it must be X2 6= ∅ when X3, X4 6= ∅;

Hence, for each envy-free outcome (X,p),X can only fall into one of the following
five cases:

1. X0 6= ∅ and Xi = ∅ for each i ≥ 1;
2. X0, X1 6= ∅ and Xi = ∅ for each i ≥ 2;
3. X0, X1, X2 6= ∅ and Xi = ∅ for each i ≥ 3;
4. X0, X1, X3 6= ∅ and X2, X4, X5 = ∅;
5. X0, X1, X3, X5 6= ∅ and X2, X4 = ∅.

When X falls into case (1), for any pricing vector p such that (X,p) is envy-
free, it holds rev(X,p) ≤ v0k(Q + q) = (λ − 2k)q. When X falls into case
(2), for any pricing vector p such that (X,p) is envy-free, it holds rev(X,p) ≤
v0k(Q + q) + 2(kQ + q) = (λ − 2k)q + 2(kQ + q). When X falls into case (4),
for any pricing vector p such that (X,p) is envy-free, it holds rev(X,p) ≤
v0k(Q+ q) + 2(kQ+ q) + 3

2v3kQ < (λ− 2k)q + 5kQ+ 2q since v3 < 2.
When X falls into case (3), X0 can only contain items of quality Q + q, the

remaining item of quality Q+ q, denote it by j, must be assigned to X1 and X2



must contain an item of quality Q. For any pricing vector p such that (X,p)
is envy-free, there must exist an item j′ ∈ X2 such that pj′ ≤ v2qj′ < 2qj′ .
Moreover, it must be u1j = 2(Q+ q)− pj ≥ u1j′ = 2qj′ − pj′ > 0 which implies
pj ≤ 2(Q+q). Finally, for each item j′′ ∈ X0, it must be pj′′ = pj′ since qj′′ = qj′ .
Hence, it holds

rev(X,p) ≤ 4kQ+ 2(k + 1)q + v2

(
5

2
Q+ (λ− 2k)q

)

= 4kQ+ 2(k + 1)q +
5

2
Q+ (λ− 2k)q

+
1

λ

Q− 2kq + kQ(λ+ 1)/2

Qk +Q− 2kq + λq

(
5

2
Q+ (λ− 2k)q

)

=

(
4k +

5

2

)
Q+ (λ+ 2)q +

(2(λ− 2k)q + 5Q)(kQ(λ+ 1) + 2Q− 4kq)

4λ((λ− 2k)q + (k + 1)Q)

< (4k + 3)Q+ (λ + 2)q +
kQ(λ+ 1) + 2Q

2λ
< (4k + 3)Q+ (λ + 2)q + kQ

= (5k + 3)Q+ (λ + 2)q,

where the first strict inequality follows from 2(k + 1) > 5 and the second one
follows from k + 2 < kλ.

Hence, we can conclude that, when X falls into one of the cases from (1) to
(4), for any pricing vector p such that (X,p) is envy-free, it holds rev(X,p) <
(5k + 3)Q+ (λ+ 2)q.

In the remaining of this proof, we restrict to the case in which X falls into
case (5).

Lemma 14. If there exists a positive answer to I, then there exists an envy-free

outcome for I ′ of revenue greater than 2(λ− 2k)q.

Proof. Consider the allocation vector X such that X0 contains the k items of
quality Q+ q, X1 contains k items of quality Q, X3 contains the item of quality
Q/2 plus the k− 1 items forming a positive answer to I, X5 contains the λ− 2k
items of quality q and X2 = X4 = ∅. Note that X is monotone. We show that
the outcome (X, p̃) is envy-free.

According to the price vector p̃, it holds p̃j = (λ−2k)q
k +

(
3 + 1

λ

)
Q
2 − q

λ for

each j ∈ X0, p̃j = (3λ+1)Q−2q
2λ for each j ∈ X1, p̃j =

(λ+1)qj−q
λ for each j ∈ X3

and p̃j = q for each j ∈ X5.

Because of Lemma 5, in order to show that (X, p̃) is envy-free, we only need
to prove that, for each buyer i /∈ W (X) and T ⊆ M with |T | = di, it holds∑

j∈T uij ≤ 0. Note that the buyers not belonging to W (X) are buyers 2 and 4.

For buyer 2, for each pair of items (j, j′) with j ∈ X0 and j′ ∈ X1, it holds
u2j < u2j′ , for each pair of items (j′, j′′) with j′ ∈ X1 and j′′ ∈ X3, it holds
u2j′ < u2j′′ and, for each pair of items (j′, j′′′) with j′ ∈ X1 and j′′′ ∈ X5, it



holds u2j′ < u2j′′′ . In fact, we have

u2j′ − u2j =
λq

k
− 2q − v2q

>

(
λ

k
− 4

)
q

> 0,

where the first inequality follows from v2 < 2 and the second one follows from
λ > 4k;

u2j′′ − u2j′ = v2qj − qj −
qj
λ

− v2Q +
3

2
Q+

Q

2λ

>
1

λ

(
Q

2
− qj

)

> 0,

where the first inequality follows from 1 < v2 < 3/2 and the second one follows
from qj < Q/2 for each j ∈ X3; and

u2j′′′ − u2j′ = v2q − q − v2Q+
3

2
Q +

Q

2λ
−

q

λ
> 0,

where the inequality follows from 1 < v2 < 3/2 and q < Q/2.

Hence, the set of items of cardinality d2 which gives the highest utility to
buyer 2 is T = X1 ∪X3 ∪X5. It holds

∑

j∈T

(v2qj − p̃j)

= k
(
v2Q− 3

2Q− Q
2λ + q

λ

)
+ v2Q−Q− Q

λ + kq
λ + (λ− 2k)(v2q − q)

= 0.

For buyer 4, for each pair of items (j, j′) with j ∈ X0 and j′ ∈ X1, it holds
u4j < u4j′ , for each pair of items (j′, j′′) with j′ ∈ X1 and j′′ ∈ X3, it holds
u4j′ < u4j′′ and, for each pair of items (j′, j′′′) with j′ ∈ X1 and j′′′ ∈ X5, it
holds u4j′ < u4j′′′ . In fact, we have

u4j′ − u4j =
λq

k
− 2q − v4q

>

(
λ

k
− 4

)
q

> 0,



where the first inequality follows from v4 < 2 and the second one follows from
λ > 4k;

u4j′′ − u4j′ = v4qj − qj −
qj
λ

− v4Q +
3

2
Q+

Q

2λ

>
1

λ

(
Q

2
− qj

)

> 0,

where the first inequality follows from 1 < v4 < 3/2 and the second one follows
from qj < Q/2 for each j ∈ X3; and

u4j′′′ − u4j′′ = v4q − q − v4qj + qj +
qj
λ

−
q

λ

= (qj − q)

(
1 +

1

λ
− v4

)

> 0

where the inequality follows from v4 < 1 + 1/λ and qj > q for each j ∈ X3.
Hence, the set of items of cardinality d4 which gives the highest utility to

buyer 4 is T = X3 ∪X5. It holds

∑

j∈T

(v4qj − p̃j)

= v4Q−Q− Q
λ + kq

λ + (λ− 2k)(v4q − q)
= 0.

Hence, we can conclude that the outcome (X, p̃) is envy-free and it holds
rev(X, p̃) > 2(λ− 2k)q. ⊓⊔

We continue by showing that, for any envy-free outcome (X,p) falling into
case (5) and such that X1 contains an item of quality Q+q, it holds rev(X,p) <
(λ+ 2)q + (4k + 3)Q.

Note that, in such a case, by Lemma 1, X0 can only contain items of quality
Q+q. For any pricing vector p such that (X,p) is envy-free, there must exist an
item j′ ∈ X5 such that pj′ ≤ qj′ . Let j

′′ be the index of the item of quality Q+ q
belonging to X1. By the envy-freeness of (X,p), it holds u1j′′ = 2(Q+q)−pj′′ ≥
2qj′ − pj′ = qj′ which implies pj′′ < 2(Q + q). Clearly, since (X,p) is envy-free,
for each item j ∈ X0, it must be pj = pj′′ since qj = qj′′ . Hence, it holds
rev(X,p) < 4kQ+2(k+1)q+ 3

2v3Q+(λ− 2k)q < (λ+2)q+(4k+3)Q because
v3 < 2.

Since it holds (λ + 2)q + (4k + 3)Q < (λ + 2)q + (5k + 3)Q, it follows that,
either when X falls into case (5) and X1 contains an item of quality Q + q or
X falls into one of the cases from (1) to (4), for any pricing vector p such that
(X,p) is envy-free, it holds rev(X,p) ≤ (λ+ 2)q + (5k + 3)Q.

Now we are only left to consider envy-free outcomes (X,p) such that X falls
into case (5) and X1 does not contain any item of quality Q+ q.



Assume that
∑

j∈X3
> Q. This can only happen when buyer 3 is assigned

an item of quality at least Q/2. In such a case, since X1 does not contain any
item of quality Q+ q, it can only be the case that each item in X1 is of quality
Q and X3 gets the item of quality Q/2. This means that the items allocated by
X to buyers 1, 3 and 5 are drawn from the same instance I ′ considered in the
proof of Theorem 1. Hence, we can replicate the arguments used in the proof of
Lemma 8 to show that

∑
j∈X3

> Q yields a contradiction.
Similarly, assume that

∑
j∈X3

< Q. This can only happen when the items
allocated by X to buyers 3 and 5 are drawn from the same instance I ′ considered
in the proof of Theorem 1. Hence, we can replicate the arguments used in the
proof of Lemma 9 to show that

∑
j∈X3

< Q yields a contradiction.
We can conclude that there exists an envy-free outcome (X,p) falling into

case (5) in which no item of quality Q + q belongs to X1 only if
∑

j∈X3
qj = Q.

Since, as we have already observed, in such a case the item of quality Q/2 has
to belong to X3, it follows that there exists an envy-free outcome (X,p) falling
into case (5) in which no item of quality Q + q belongs to X1 only if there are
k− 1 items inherited from I whose sum is exactly Q/2, that is, only if I admits
a positive solution.

Any other envy-free outcome can raise a revenue of at most (λ+2)q+(5k+3)Q.
Hence, if there exists a positive answer to I, then, by Lemma 14, there exists
a solution to I ′ of revenue strictly greater than 2(λ− 2k)q, while, if there is no
positive answer to I, then there exists no solution to I ′ of revenue more than
(λ+ 2)q + (5k + 3)Q.

Thus, if there exists an r-approximation algorithm for the RMPSD on con-

tinuous instances with r ≤ 2(λ−2k)q
(λ+2)q+(5k+3)Q , it is then possible to decide in

polynomial time the Constrained Partition problem, thus implying P = NP. By

λ ≥ 4(k+1)
ǫ + (5k+3)(2−ǫ)Q

ǫq − 2, it follows 2(λ−2k)q
(λ+2)q+(5k+3)Q ≥ 2 − ǫ which implies

the claim. ⊓⊔
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