Abstract
We consider the revenue maximization problem with sharp multi-demand, in which m indivisible items have to be sold to n potential buyers. Each buyer i is interested in getting exactly d i items, and each item j gives a benefit v ij to buyer i. We distinguish between unrelated and related valuations. In the former case, the benefit v ij is completely arbitrary, while, in the latter, each item j has a quality q j , each buyer i has a value v i and the benefit v ij is defined as the product v i q j . The problem asks to determine a price for each item and an allocation of bundles of items to buyers with the aim of maximizing the total revenue, that is, the sum of the prices of all the sold items. The allocation must be envy-free, that is, each buyer must be happy with her assigned bundle and cannot improve her utility. We first prove that, for related valuations, the problem cannot be approximated to a factor O(m 1 − ε), for any ε > 0, unless P = NP and that such result is asymptotically tight. In fact we provide a simple m-approximation algorithm even for unrelated valuations. We then focus on an interesting subclass of “proper” instances, that do not contain buyers a priori known not being able to receive any item. For such instances, we design an interesting 2-approximation algorithm and show that no (2 − ε)-approximation is possible for any 0 < ε ≤ 1, unless P = NP. We observe that it is possible to efficiently check if an instance is proper, and if discarding useless buyers is allowed, an instance can be made proper in polynomial time, without worsening the value of its optimal solution.
This work was partially supported by the PRIN 2010–2011 research project ARS TechnoMedia: “Algorithmics for Social Technological Networks” funded by the Italian Ministry of University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for Multi-Product Pricing. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)
Bezjian-Avery, A., Calder, B., Iacobucci, D.: New Media Interative Advertising vs. Traditional Advertising. Journal of Advertising Research, 23–32 (1998)
Bilò, V., Flammini, M., Monaco, G.: Approximating the Revenue Maximization Problem with Sharp Demands. CoRR, arXiv:1312.3892 (2013)
Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg (2008)
Chalermsook, P., Chuzhoy, J., Kannan, S., Khanna, S.: Improved Hardness Results for Profit Maximization Pricing Problems with Unlimited Supply. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 73–84. Springer, Heidelberg (2012)
Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses. In: Proceedings of FOCS 2013, pp. 370–379 (2013)
Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph Products Revisited: Tight Approximation Hardness of Induced Matching, Poset Dimension and More. In: Proceedings of SODA 2013, pp. 1557–1576 (2013)
Chen, N., Deng, X.: Envy-Free Pricing in Multi-item Markets. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)
Chen, N., Deng, X., Goldberg, P.W., Zhang, J.: On Revenue Maximization with Sharp Multi-Unit Demands. In: CoRR, arXiv:1210.0203 (2012)
Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal Envy-Free Pricing with Metric Substitutability. SIAM Journal on Computing 40(3), 623–645 (2011)
Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination Can Be Hard: Approximability of the Unique Coverage Problem. SIAM Journal on Computing 38(4), 1464–1483 (2008)
Deng, X., Goldberg, P., Sun, Y., Tang, B., Zhang, J.: Pricing Ad Slots with Consecutive Multi-unit Demand. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 255–266. Springer, Heidelberg (2013)
Deng, X., Goldberg, P.W., Tang, B., Zhang, J.: Multi-unit Bayesian Auction with Demand or Budget Constraints. In: Proceedings of WIT-EC 2012 (2012)
Deng, X., Sun, Y., Yin, M., Zhou, Y.: Mechanism Design for Multi-slot Ads Auction in Sponsored Search Markets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 11–22. Springer, Heidelberg (2010)
Edelman, B., Ostrovsky, M., Schwarz, M.: Internet Advertising and the Generalized Second-Price Auction. American Economic Review 97(1), 242–259 (2007)
Feldman, M., Fiat, A., Leonardi, S., Sankowski, P.: Revenue Maximizing Envy-Free Multi-Unit Auctions with Budgets. In: Proceedings of EC 2012, pp. 532–549 (2012)
Foley, D.: Resource Allocation and the Public Sector. Yale Economic Essays 7, 45–98 (1967)
Glynn, P., Rusmevichientong, P., Van Roy, B.: A Non-Parametric Approach to Multi-Product Pricing. Operations Research 54(1), 82–98 (2006)
Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On Profit-Maximizing Envy-Free Pricing. In: Proceedings of SODA 2005, pp. 1164–1173 (2005)
Hartline, J.D., Yan, Q.: Envy, Truth, and Profit. In: Proceedings of EC 2011, pp. 243–252 (2011)
Nisan, N., et al.: Google’s Auction for TV Ads. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 309–327. Springer, Heidelberg (2009)
Rosenkrans, G.: The Creativeness and Effectiveness of Online Interactive Rich Media Advertising. Journal of Interactive Advertising 9(2) (2009)
Shocker, A.D., Srinivasan, V.: Multiattribute Approaches for Product Concept Evaluation and Generation: A Critical Review. Journal of Marketing Research 16, 159–180 (1979)
Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of Finance 16, 8–37 (1961)
Walras, L.: Elements of Pure Economics. Allen and Unwin (1954)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bilò, V., Flammini, M., Monaco, G. (2014). Approximating the Revenue Maximization Problem with Sharp Demands. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-08404-6_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08403-9
Online ISBN: 978-3-319-08404-6
eBook Packages: Computer ScienceComputer Science (R0)