Skip to main content

Mining Audio Data for Multiple Instrument Recognition in Classical Music

  • Conference paper
  • First Online:
New Frontiers in Mining Complex Patterns (NFMCP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8399))

Included in the following conference series:

Abstract

This paper addresses the problem of identification of multiple musical instruments in polyphonic recordings of classical music. A set of binary random forests was used as a classifier, and each random forest was trained to recognize the target class of sounds. Training data were prepared in two versions, one based on single sounds and their mixes, and the other containing also sound frames taken from classical music recordings. The experiments on identification of multiple instrument sounds in recordings are presented, and their results are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbedo, J.G.A., Tzanetakis, G.: Musical instrument classification using individual partials. IEEE Trans. Audio Speech Lang. Process. 19(1), 111–122 (2011)

    Article  Google Scholar 

  2. Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., Klapuri, A.: Automatic music transcription: breaking the glass ceiling. In: 13th International Society for Music Information Retrieval Conference (ISMIR), pp. 379–384 (2012)

    Google Scholar 

  3. Bosch, J.J., Janer, J., Fuhrmann, F., Herrera, P.: A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals. In: 13th International Society for Music Information Retrieval Conference (ISMIR), pp. 559–564 (2012)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Cont, A., Dubnov, S., Wessel, D.: Realtime multiple-pitch and multiple-instrument recognition for music signals using sparse non-negativity constraints. In: Proceedings of the 10th International Conference on Digital Audio Effects (DAFx-07), pp. 85–92 (2007)

    Google Scholar 

  6. Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition of musical instruments in polyphonic audio. In: 4th International Conference on Music Information Retrieval ISMIR (2003)

    Google Scholar 

  7. Essid, S., Richard, G., David, B.: Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Trans. Audio Speech Lang. Process. 14(1), 68–80 (2006)

    Article  Google Scholar 

  8. Fuhrmann, F.: Automatic musical instrument recognition from polyphonic music audio signals. Ph.D. Thesis, Universitat Pompeu Fabra (2012)

    Google Scholar 

  9. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: popular, classical, and jazz music databases. In: Proceedings of the 3rd International Conference on Music Information Retrieval, pp. 287–288 (2002)

    Google Scholar 

  10. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: music genre database and musical instrument sound database. In: 4th International Conference on Music Information Retrieval ISMIR, pp. 229–230 (2003)

    Google Scholar 

  11. Heittola, T., Klapuri, A., Virtanen, A.: Musical instrument recognition in polyphonic audio using source-filter model for sound separation. In: Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009) (2009)

    Google Scholar 

  12. Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic classification of pitched musical instrument sounds. In: Klapuri, A., Davy, M. (eds.) Signal Processing Methods for Music Transcription. Springer Science+Business Media LLC, New York (2006)

    Google Scholar 

  13. ISO: MPEG-7 Overview. http://www.chiariglione.org/mpeg/

  14. Jiang, W., Wieczorkowska, A., Raś, Z.W.: Music instrument estimation in polyphonic sound based on short-term spectrum match. In: Hassanien, A.-E., Abraham, A., Herrera, F. (eds.) Foundations of Computational Intelligence Volume 2. SCI, vol. 202, pp. 259–273. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Kashino, K., Murase, H.: A sound source identification system for ensemble music based on template adaptation and music stream extraction. Speech Commun. 27, 337–349 (1999)

    Article  Google Scholar 

  16. Kirchhoff, H., Dixon, S., Klapuri, A.: Multi-template shift-variant non-negative matrix deconvolution for semi-automatic music transcription. In: 13th International Society for Music Information Retrieval Conference (ISMIR), pp. 415–420 (2012)

    Google Scholar 

  17. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps. EURASIP J. Appl. Signal Process. 2007, 1–15 (2007)

    Article  Google Scholar 

  18. Kubera, E., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A.: All that jazz in the random forest. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 543–553. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Kuperman, M.: Suite N 1 in G-Dur BWV 1007. http://www.viola-bach.info/

  20. Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Musical instruments in random forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 281–290. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Leveau, P., Vincent, E., Richard, G., Daudet, L.: Instrument-specific harmonic atoms for mid-level music representation. IEEE Trans. Audio Speech Lang. Process. 16(1), 116–128 (2008)

    Article  Google Scholar 

  22. Little, D., Pardo, B.: Learning musical instruments from mixtures of audio with weak labels. In: 9th International Conference on Music Information Retrieval ISMIR (2008)

    Google Scholar 

  23. Martin, K.D.: Toward automatic sound source recognition: identifying musical instruments. Presented at the 1998 NATO Advanced Study Institute on Computational Hearing, Il Ciocco, Italy (1998)

    Google Scholar 

  24. Martins, L.G., Burred, J.J., Tzanetakis, G., Lagrange, M.: Polyphonic instrument recognition using spectral clustering. In: 8th International Conference on Music Information Retrieval ISMIR (2007)

    Google Scholar 

  25. MIDOMI: Search for Music Using Your Voice by Singing or Humming. http://www.midomi.com/

  26. Müller, M., Ellis, D., Klapuri, A., Richard, G.: Signal processing for music analysis. IEEE JSTSP 5(6), 1088–1110 (2011)

    Google Scholar 

  27. Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Appl. Comput. Sci. 16(2), 55–65 (2008)

    Google Scholar 

  28. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)

    Google Scholar 

  29. RaÅ›, Z.W., Wieczorkowska, A.A. (eds.): Advances in Music Information Retrieval. SCI, vol. 274. Springer, Heidelberg (2010)

    Google Scholar 

  30. Richards, G., Wang, W.: What influences the accuracy of decision tree ensembles? J. Intell. Inf. Syst. 39, 627–650 (2012)

    Article  Google Scholar 

  31. Shazam Entertainment Ltd., http://www.shazam.com/

  32. Shen, J., Shepherd, J., Cui, B., Liu, L. (eds.): Intelligent Music Information Systems: Tools and Methodologies. Information Science Reference, Hershey (2008)

    Google Scholar 

  33. The University of IOWA Electronic Music Studios: Musical Instrument Samples. http://theremin.music.uiowa.edu/MIS.html

  34. TrackID – Sony Smartphones. http://www.sonymobile.com/global-en/support/faq/xperia-x8/internet-connections-applications/trackid-ps104/

  35. Vincent, E., Rodet, X.: Music transcription with ISA and HMM. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 1197–1204. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgments

This project was partially supported by the Research Center of PJIIT, supported by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Kubera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kubera, E., Wieczorkowska, A.A. (2014). Mining Audio Data for Multiple Instrument Recognition in Classical Music. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2013. Lecture Notes in Computer Science(), vol 8399. Springer, Cham. https://doi.org/10.1007/978-3-319-08407-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08407-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08406-0

  • Online ISBN: 978-3-319-08407-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics