Skip to main content

Identification of Fractional Order Models: Application to 1D Solid Diffusion System Model of Lithium Ion Cell

  • Conference paper
Progress in Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 366))

  • 2162 Accesses

Abstract

In this paper the simplified refined instrumental variable method for fractional order transfer function model identification is applied to a simulated diffusion system of concentration of the lithium ions in a battery cell. The diffusion process is represented by a 1D spherical diffusion partial differential equation of concentration and is solved numerically by finite volume method (FVM) in spatial and temporal domains. The fractional transfer function (FTF) model order is selected and model parameters are identified based on sampled input-output data. The main advantage of using FTF model for simulation purposes is the increased accuracy, as compared to FVM, while retaining simulation simplicity of having a reduced order model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas, K., Newman, J., Darling, R.: Advances in lithium-ion batteries, 345 (2002)

    Google Scholar 

  2. Doyle, M., Fuller, T.F.J., Newman, J.: Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell, J. of The Electrochemical Society, 140(6), 1526–1533 (1993)

    Article  Google Scholar 

  3. Newman, J.: Electrochemical Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, (1991)

    Google Scholar 

  4. Nagarajan, G.S., Van Zee, J.W., Spotnitz, R.M.: A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity, J. Electrochem. Soc. 145(3), 771–779 (1998)

    Google Scholar 

  5. Doyle, M.: Design and simulation of Lithium Rechargeable Batteries. Ph.D. Thesis, University of California, Berkeley (1995)

    Google Scholar 

  6. Botte, G.G., Subramanian, V.R., White, R.E.: Mathematical modeling of secondary lithium batteries. 45 (15–16) 2595–2609 (2000)

    Google Scholar 

  7. Bernardi, D., Pawlikowski, E., Newman, J.: A General Energy Balance for Battery Systems, Electrochem. Soc. 32(1), 5-12 (1985)

    Article  Google Scholar 

  8. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer-Verlag, Springer-Verlag, Heidelberg (2009)

    Google Scholar 

  9. Randles, J.E.B.: Kinetics of rapid electrode reactions, Disc. Faraday Soc, 11–19 (1947)

    Google Scholar 

  10. Young, P.C., Jakeman, A.J.: Refined instrumental variable methods of time-series analysis: Part III, extensions. Int. J. of Control, 31, 741–764 (1980)

    Article  MATH  Google Scholar 

  11. Malti, R., Victor, S., Oustaloup, A., Garnier , H.: An optimal instrumental variable method for continuous time fractional model identification. Proc. of the 17th IFAC World Congress, pp. 14379-14384 (2008)

    Google Scholar 

  12. Allafi, W., Burnham, K.J: Identification of Fractional-Order Continuous-Time Hybrid Box-Jenkins Models Using Refined Instrumental Variable Continuous-Time Fractional-Order Method. Advances in Intelligent Systems and Computing 240, 785–794 (2014)

    Article  MATH  Google Scholar 

  13. Ghanbari, M., Haeri, M.: Order and pole locator estimation in fractional order systems using bode diagram. Signal Process. 91(2), 191–202 (2011)

    Article  MATH  Google Scholar 

  14. Jacobsen, T., West, K., Diffusion impedance in planar, cylindrical and spherical symmetry, Electrochem. Acta., 40(2), 255–262 (1995)

    Article  Google Scholar 

  15. Oustaloup, A., Levron, A., Mathieu, N.M.: Frequency-band complex noninteger differentiator: characterization and synthesis, IEEE Trans., Circuits Syst., I Fundam. Theory, 25–39, 47(1) (2000)

    Google Scholar 

  16. Aizad, T., Sumislawska, M., Maganga, O., Agbaje, O., Phillip, N., Burnham, K.J.: Investigation of Model Order Reduction Techniques: A Supercapacitor Case Study, Advances in Intelligent Systems and Computing 240, 795–804 (2014)

    Article  MATH  Google Scholar 

  17. Gu, W.B., Wang, C.Y., Weidner, J.W, Jungstc, R.G., Nagasubramanianc, G.: Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow, J. Electrochem. Soc., 147(2), 427–434 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Allafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Allafi, W., Zajic, I., Burnham, K.J. (2015). Identification of Fractional Order Models: Application to 1D Solid Diffusion System Model of Lithium Ion Cell. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds) Progress in Systems Engineering. Advances in Intelligent Systems and Computing, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-319-08422-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08422-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08421-3

  • Online ISBN: 978-3-319-08422-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics