Skip to main content

Mining State-Based Models from Proof Corpora

  • Conference paper
Intelligent Computer Mathematics (CICM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8543))

Included in the following conference series:

Abstract

Interactive theorem provers have been used extensively to reason about various software/hardware systems and mathematical theorems. The key challenge when using an interactive prover is finding a suitable sequence of proof steps that will lead to a successful proof requires a significant amount of human intervention. This paper presents an automated technique that takes as input examples of successful proofs and infers an Extended Finite State Machine as output. This can in turn be used to generate proofs of new conjectures. Our preliminary experiments show that the inferred models are generally accurate (contain few false-positive sequences) and that representing existing proofs in such a way can be very useful when guiding new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise Selection for Mathematics by Corpus Analysis and Kernel Methods. Journal of Automated Reasoning 52(2), 191–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biermann, A., Feldman, J.A.: On the Synthesis of Finite-State Machines from Samples of Their Behavior. IEEE Transactions on Computers C-21(6), 592–597 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  5. Cheng, K.T., Krishnakumar, A.S.: Automatic Functional Test Generation Using the Extended Finite State Machine Model. In: Proceedings of the 30th International Design Automation Conference, DAC 1993, pp. 86–91. ACM, New York (1993)

    Google Scholar 

  6. Dixon, L., Fleuriot, J.: IsaPlanner: A Prototype Proof Planner in Isabelle. In: Baader, F. (ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Duncan, H.: The Use of Data Mining for the Automatic Formation of Tactics. Ph.D. thesis, University of Edinburgh (2007)

    Google Scholar 

  8. Gold, E.M.: Language Identification in the Limit. Information and Control 10(5), 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices of the American Mathematical Society 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Grov, G., Kissinger, A., Lin, Y.: A Graphical Language for Proof Strategies. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 324–339. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Grov, G., Komendantskaya, E., Bundy, A.: A Statistical Relational Learning Challenge – Extracting Proof Strategies from Exemplar Proofs. In: ICML 2012 Workshop on Statistical Relational Learning (2012)

    Google Scholar 

  13. Hales, T.C.: Introduction to the Flyspeck Project. In: Coquand, T., Lombardi, H., Roy, M.F. (eds.) Mathematics, Algorithms, Proofs. Dagstuhl Seminar Proceedings, vol. 05021. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

    Google Scholar 

  14. Hall, M., et al.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  15. Heras, J., Komendantskaya, E.: ML4PG in Computer Algebra Verification. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 354–358. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-Pattern Recognition and Lemma Discovery in ACL2. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 389–406. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C.: Automatic Learning of Proof Methods in Proof Planning. Logic Journal of the IGPL 11(6), 647–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaliszyk, C., Urban, J.: Learning-assisted Automated Reasoning with Flyspeck. CoRR abs/1211.7012 (2012)

    Google Scholar 

  19. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR abs/1310.2805 (2013)

    Google Scholar 

  20. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: IJCAI, pp. 1137–1145. Morgan Kaufmann (1995)

    Google Scholar 

  21. Komendantskaya, E., Heras, J., Grov, G.: Machine Learning in Proof General: Interfacing Interfaces. In: UITP. EPTCS, vol. 118, pp. 15–41 (2013)

    Google Scholar 

  22. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine Learning for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Leroy, X.: Formal Verification of a Realistic Compiler. Communications of the ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  25. Lorenzoli, D., Mariani, L., Pezze, M.: Automatic Generation of Software Behavioral Models. In: ACM/IEEE 30th International Conference on Software Engineering, ICSE 2008, pp. 501–510 (May 2008)

    Google Scholar 

  26. The Coq Development Team: The Coq Proof Assistant Reference Manual. Version 8.4. LogiCal Project, http://coq.inria.fr/refman

  27. Meng, J., Paulson, L.C.: Translating Higher-Order Clauses to First-Order Clauses. Journal of Automated Reasoning 40(1), 35–60 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  29. Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive Theorem Proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 232–245. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  31. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring Extended Finite State Machine models from software executions. In: 20th Working Conference on Reverse Engineering (WCRE), pp. 301–310 (October 2013)

    Google Scholar 

  32. Walkinshaw, N., Derrick, J., Guo, Q.: Iterative Refinement of Reverse-Engineered Models by Model-Based Testing. In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS, vol. 5850, pp. 305–320. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empirical Software Engineering 18(4), 791–824 (2013)

    Article  Google Scholar 

  34. Wiedijk, F.: Formal Proof – Getting Started. Notices of the American Mathematical Society 55(11), 1408–1414 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gransden, T., Walkinshaw, N., Raman, R. (2014). Mining State-Based Models from Proof Corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08434-3_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08433-6

  • Online ISBN: 978-3-319-08434-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics