arXiv:1403.5058v1 [cs.HC] 20 Mar 2014

Towards an Interaction-based Integration of
MKM Services into End-User Applications

Constantin Jucovschi

Jacobs University Bremen

Abstract. The Semantic Alliance (SAlly) Framework, first presented
at MKM 2012, allows integration of Mathematical Knowledge Manage-
ment services into typical applications and end-user workflows. From
an architecture allowing invasion of spreadsheet programs, it grew into
a middle-ware connecting spreadsheet, CAD, text and image process-
ing environments with MKM services. The architecture presented in the
original paper proved to be quite resilient as it is still used today with
only minor changes.

This paper explores extensibility challenges we have encountered in the
process of developing new services and maintaining the plugins invading
end-user applications. After an analysis of the underlying problems, I
present an augmented version of the SAlly architecture that addresses
these issues and opens new opportunities for document type agnostic
MKM services.

1 Introduction

A major part of digital mathematical content today is created in Computer-
Aided Design (CAD) systems, spreadsheet documents, wiki pages, slide pre-
sentations, program source code. Taking advantage of Mathematical Knowledge
Management (MKM) representations and services, to better manage mathemati-
cal content in these documents, is still a complex and time consuming task, often,
because there is no adequate tool support. Imagine a complex CAD model com-
posed of hundreds of components. Readers of the CAD model would benefit a
lot if functional information (e.g. specifying role) could be attached to compo-
nents so that: i) semantic services generate descriptive information about the
role of the object in the model; ii) safety requirements matching that role could
be fetched from a ”safety-requirements.tex” document etc. Adding functional
information (e.g. encoded as a URI to an ontology concept) to CAD compo-
nents can be achieved in most systems by adding a custom property to the
CAD component. The services generating descriptive information and fetching
safety requirements could be implemented as web services which, given the con-
cept URI, would fetch required information. In this scenario, the engineer would
rightfully consider that the MKM services are not adequately supported because
he has to manually get the functional information associated to an object, change
application context to a web browser and supply the functional information into
the MKM service. The feeling of tool support inadequacy, is not caused by the

MKM services themselves, but rather by the steps (workflow) that the engineer
had to perform in order to be able to consume the MKM services. I call this
workflow User-Service Interaction (USI).

The importance of developing adequate tool support, especially for authoring,
is a reoccurring topic at MKM [KKO04] and also in the wider semantic technology
community [SL04; Jool1}|SS10]. The arguments come from different directions.
[SS10] argues that some tasks, required for semantic content creation, can be per-
formed only by humans; making development of computer support for tasks that
allow semi-automation ever more important. [SL04; lJooll] base their intuitions
on the experiences and lessons learned from deploying semantic technologies in
real-world scenarios. They stress the importance of “user-friendly modeling tools
and procedures” |[Jooll| and share lessons learned such as “KM systems should
not be introduced as explicit stand-alone applications that user intentionally must
interact with in addition to their other job responsibilities” [SL04|. [KKO04] uses
Prisoner’s dilemma to explain why the long-term benefits of having semantic con-
tent fail at motivating semantic content creation. Further on, authors suggests
that, improving authoring support and letting content authors reap the results
of semantic content creation early on, would increase motivation for semantic
content creation.

The Semantic Alliance (SAlly) Framework |[Dav—+12|, set the goal of sup-
porting the process of building adequate tool support for Mathematical Knowl-
edge Management services by integrating them into typical applications and
end-user workflows. The framework allowed MKM services to be simultane-
ously integrated in several end-user applications that share the same media-
type (e.g. spreadsheet documents). In this way, once an MKM service was in-
tegrated, through the SAlly Framework, with Microsoft Excel, it would work
”out of the box” in Open/Libre Office Calc. Later work, added support for CAD
|[Koh+13], text and image [Bre+14] editors as well as allowed creation of cross-
application MKM services, e.g. allowing seeing costs of a CAD component in
the pricing spreadsheet document, leading to the Multi-Application Semantic
Alliance Framework (MA-SAlly) [Koh+13].

This paper explores extensibility challenges we have encountered in the pro-
cess of integrating new MKM services into end-user applications. These chal-
lenges, described in section [3] did not depend so much on the MKM service
functionality, but rather, on the type of User-Service Interaction it required.
Section [] describes how USI requirements can be decomposed into modular in-
terfaces, that are easier to standardize but also extend. Afterwards, I present an
augmented version of the Semantic Alliance Architecture that incorporates the
USI modular interfaces and thus solve the extensibility problem motivating this
research. The paper ends with implementation results and a conclusion.

2 Integration Analysis of the Semantic Alliance
Framework

In this section, I want to analyze the integration strategies used in the SAlly
framework [Dav+12] to integrate MKM services into end-user applications. I
will shortly introduce each identified strategy and assess its impact by using the
following cost model:

n > 2 applications must be integrated with m > 2 MKM services. There
is a cost function C' that computes the cost of implementing any part of
the integration such that the cost of implementing any part is equal to
the sum of the costs implementing its subparts.

The properties of the cost function C clearly oversimplify the software develop-
ment process. Yet, the extent to which these properties are used in this paper
should not significantly change the validity of the computations. Also, the goal
of integrating n applications with m services might seem unrealistic. Indeed,
there are MKM services for which integration into certain applications makes
little or no sense at all. On the other hand, from the experience gained with
the MA-SAlly framework, MKM services such as definition lookup and semantic
navigation were integrated in all invaded applications.

Figure[Th, shows the Model-View-
Adapter (MVA) architectural pat-

tern that, along with Model-View- Model
ol

Controller (MVC), are widely used in)
the development of applications with v
heavy user interaction. The MVA pat- Ea@
tern structures application compo- A
nents into three categories: model, v
adapter and view. The components -

in the view category are responsible
for the visual interface; components
in the model category are responsi-

o . Fig. 1. a) the Model-View-Adapter pattern
ble for. application logic and Compo.— b) direct integration of a MKM service into
nents in the adapter category, medi- o application. M, M’ are the models, V,
ate the interaction between view and vV’ are the views and A, A’ are the adapter

model components. The MVA archi- of the application and MKM service re-
tectural pattern is also suitable for spectively. S is an optional semantic (web-
representing the architecture of MKM)service.
services where the model implements
the MKM representation, service logic
or just sends requests to an external MKM service. The view of an MKM service
implements any custom dialogs, toolbars and service configuration pages. The
MKM service adapter wires everything together.

MKM services that are directly integrated into an application, i.e. imple-
mented as a plugin for that application and share the same memory space,

enjoy several practical benefits. Namely, they can directly access all relevant
resources the host application can provide. Figure [Ip, shows typical resource
access patterns among end-user application components (M, A, V) and MKM
service components (M’; A’, V’). The MKM service adapter (A’), often influ-
ences how application events are handled, how application view and model get
updated (hence the edges 1, 2 and 3). The MKM model (box M’) may both lis-
ten to changes and modify application model M (edge 4). When MKM services
are directly integrated into an application, implementing edges 1, 2, 3 and 4 is
equivalent to a performing simple API calls and hence very straightforward. A
disadvantage is that directly integrating m such services into n applications will
result in a huge cost

Yo D CMP)+0(49) + OV, (1)

a€App s€Serv

where M/®, Al* and V/® are the model, adapter and view that needs to be
implemented to integrate MKM service s into an application a.

A natural way of reducing the cost in equation [T} is to refactor MKM ser-
vice models and adapters into standalone web services (Figure) The MKM
adapter and model (A’, M’) are no longer part of the application but still need
to communicate with it. This is achieved through an end-user application plugin
A”, that allows A’ and M’ to access the same resources as before, i.e., edges
1,2,3 and 4, in Figure [Ib by communicating through a network channel COM.
Additionally, A” also needs to allow A’ to communicate with V' (edge 5 in Figure
). The cost of this integration strategy is:

ST cAP)+CVE+ > CAD) +C(MP) (2)

a€App s€Serv seServ

where A® and M/* are the adapter and model of MKM service s implemented as
a standalone service; A" is the application plugin allowing standalone service s
to communicate with application a. At this point, A’® and M/* can be running
on a different server, can be implemented in any language and optionally even
be part of the service S from Figure [[b. On the other hand, implementation
costs of the application plugin A”® can become very high as they depend on the
complexity of access patterns between MKM service and application resources
(i.e. edges 1, 2, 3, 4 and 5).

To further reduce costs, SAlly refactors V'’ into the same standalone service
as M’ and A’ (Figure) Generally, this may be achieved in two ways: i) using
the graphical toolkit of the language in which V' is implemented — this requires
V'’ to run on the same computer as the end-user application. i) using an external
interaction interpreter (e.g. web browser) running on the same computer as the
end-user application. The SAlly architecture uses the second approach where
a general purpose screen manager, called Theo (Figure , runs on the same
computer as the application. The cost is further reduced to

Yo D ClP)+ Y CAR) +C(M2) +O(V)) 3)

a€App s€Serv seServ

COM

a) b)

Fig. 2. a) refactoring MKM service model and adapter into a Web-Service b) refactor-
ing MKM service view into the Web-Service.

Fig. 3. Architecture of the Semantic Alliance Framework from an integration perspec-
tive

Further optimizations come from standardizing and reusing plugins A!® for
multiple services. The SAlly architecture choses to standardize A”® by applica-
tion type (e.g. spreadsheet documents). Namely, for application type T and a
set of services S(T') for that application type, one could define an API A(T)
that can serve all services in S(T') i.e.

Va € App(T).Vs € S(T).A* C A(T) (4)

Hence, the cost equation can be updated to

> Y ClAM)+ Y C(AZ)+C(MP) +C(V)) ()
(1)

TeAppType \a€App(T seS(T)

where A, (T) is the implementation of API A(T) in application a and corre-
sponds to the application dependent invaders called Alexes in [Dav+12] (Figure
4).

Considering that the SAlly Framework, was specifically designed for integrat-
ing semantic services into applications, most MKM service models M/* require
persistent storage for semantic information in the document. For example, most
MKM services for spreadsheet documents, require functionality allowing seman-
tic information to be attached to sheets and cell ranges. Instead of letting each
MKM service model implement its own persistence strategy, an Abstract Docu-
ment Model ADM (T') (application-type dependent), was introduced (Figure |3)),
that served as a common semantic layer that all MKM services could reuse. Sim-
ilarly, an Abstract Document Adapter (ADA) was implemented to ease commu-
nication and coordinate how multiple MKM services process events. The ADM,
ADA, A3 M* V/* components in Figureare part of the box “Sally” in Figure
@A

| e B
LA

1 Semantic

Services 5

Semantic Alliance

Fig. 4. SAlly Architecture from |[Dav+12]

3 Problem Description

The first problem of the SAlly architecture comes from equation namely, A(T)
is defined as an API that can serve all services S(T'). Defining an A(T) for a
finite set S(T') is not very hard but generally, S(T) is infinite. In practice, one
defines an A(T') to support currently available MKM services. However, when a
new MKM service needs to be integrated, which requires support to e.g. create
a new sheet and the current A(spreadsheet) does not support this operation,
S cannot be implemented unless A(spreadsheet) is extended. Considering that
multiple applications implement APT A(T) (through plugin A, (7)), constantly
changing A(T) becomes a bottleneck and a source of errors. Conversely, if an
application can only support 95% of A(T), it cannot be (safely) integrated even
with services that do not need the rest 5% of the A(T).

Defining the abstract document model ADM(T) for an application type,
shares similar issues as defining A(7"). This became very apparent when we tried
to define an abstract document model for CAD systems |[Koh+13]. Most CAD
systems share the concept of an assembly which defines the position in space of
CAD parts or nested CAD assemblies. At the assembly level, one could define
an ADM (T) capturing various relationships among assembly components that
could be applied to most CAD systems. The interesting geometrical properties,
however, are only represented in the CAD parts, which, may vastly differ even
within the same CAD system (especially if CAD parts are imported from other
systems). Defining an ADM (T') capturing parts data is so time-consuming that
it is not worth the integration benefits it brings.

Defining an application type dependent A(T) and ADM (T) makes a lot of
sense when the invaded applications are similar in most respects as LibreOffice
Calc and Microsoft Excel (used in the original SAlly paper) are. But the list of
such examples is not very long. Most applications are, to some extent, unique
but still share a great deal of concepts with other applications.

4 Method

This paper aims at reducing the dependency of integration strategies on the
application type. Equation [3] (in section [2]) is the last integration strategy in the
SAlly architecture that does not depend on the notion of application-type. At
that point, the biggest cost factor is contributed by

Y D) (6)

a€App seServ

where A!/° is a plugin in application a that allows MKM service s to e.g. insert
new data into the active document, highlight some part of the document or get
notified when another object is selected and so on. A”* is the critical component
that enables User-Service Interaction between MKM service s and application
a. An important aspect is that, while A”® enables service s to interact with

application a, it does not implement the interaction itself. The implementation
of the User-Service Interaction is part of the MKM service.

One of the main purposes of MKM User-Service Interactions is to support
the process of aligning document content with concepts in some ontology. Typ-
ical tasks include: annotating content, making relationships explicit, validating
content and managing changes. The features and the types of interactions offered
by USIs strongly depend on the semantic format/ontology and often dependent
only slightly on the format of the document that is semantically annotated.
Consider a high-level description of the OMDoc document ontology:

An OMDoc document organizes content into theories that relate to each
other either by import or view relations. Theories may contain sym-
bols that are transported from one theory to another using the relations
among theories.

This description clearly specifies requirements regarding the types of annotations

(theories and symbols) and relationships among them (theories contain symbols

and relate to other theories) that OMDoc authoring services need to support.

The requirements on the host document format are rather implicit: relations need

to be persistent and react in sensible ways to document changes. Furthermore,

validation services that make sure that imports are valid, that there are no cyclic

dependencies, that all symbols are defined — require only information regarding

OMDoc relations are hence completely independent of host document format.
From the experience gained through the Semantic Alliance Framework, I

compiled a list of common and application-type independent functionality that

Al® typically need to implement. Namely:

content selection — is by far the most common functionality USIs require. It
allows the user to point MKM services to document objects, and reversely,
MKM services to point the user to document objects. It is heavily used for
enriching and modifying semantic content.

semantic storage — stores and retrieves semantic information associated to
document objects. One can differentiate between document and object level
semantic information.

context menus — provide a natural way of accessing object specific interac-
tions.

application focus — used in the multi-application context and allows chang-
ing focus to a certain application. Is usually used in combination with content
selection.

content marking — used to visually mark (e.g. highlight) document content
in a non-persistent way. Very useful for projecting multiple types of semantic
content to document objects as well as selecting/deselecting multiple objects
without the danger of clicking the wrong button and loosing the whole se-
lection.

The intuition behind this paper, is that major parts of the User-Service Interac-

tions that MKM services require, can be implemented on top of document-type

independent interactions such as the ones above. So an annotation service for

OMDoc format could be defined as follows: when the user requests the context

menu for some selected object X, and there is no semantic annotation about X
in the semantic storage, add the menu item “Annotate as OMDoc module” to
the context menu, and so on. Depending on document type, selected object X
can be a text fragment, a cell range, a CAD assembly. In the same time, MKM
services might require very specific, application dependent information which
also need to be supported e.g. position of geometrical assemblies.

The problem of reducing the cost in equation [f] is essentially a problem of
defining reusable interfaces in a distributed setting. Any interface X, that can be
reused by k > 2 MKM services, reduces the cost in equation[6] by n (k — 1) C(X)
i.e. each application must implement X once to then reuse it for k services.
One can iterate this process and a define set of reusable, modular interfaces
M= {M17M2’ } such that

Al = M3 o M2 o...0 M3, 0

i.e. one can represent A!/® as composition of several implementations of modular
interfaces (M*1,... M* € M) for application a. Substituting this representation
in equation [f] and removing duplicate module implementations for the same

application, results in
> D oy (8)
a€App meM(S)

where M(S) is the set of all modules in M that are required to modularize all
A% in s € Serv.

The total cost in equation 8, depends on the ability of representing the func-
tionality, a MKM User-Service Interaction requires, in a reusable modular man-
ner. Setting M = {A”#|s € Serv}, i.e. no reuse possible, makes cost in equation
equal to the one in equation [f]

5 Augmented Semantic Alliance Architecture

The Augmented Semantic Alliance Architecture assumes, that a set M = {My, Mo, ...}
of reusable modular interfaces are defined and publicly available to the MKM
community. It also assumes that the User-Service Interaction of any MKM ser-

vice s, can be achieved by combining some set of modular interfaces that I define

as M(s) C M. If for some service s this is not possible, the set M is extended

with the necessary functionality.

Each application a, can implement a subset of the modular interfaces denoted
with M(a) € M. A MKM service s can be integrated into application a if
M(s) € M(a) i.e. application a implements all modules required by MKM
service s. To allow the possibility of having the equivalent of Abstract Document
Models from the SAlly architecture, modular interfaces may depend on other
modular interfaces (typical restrictions on circular dependencies apply).

Figure shows an example how three applications (Appi, Apps, Apps)
can be integrated with three services (M KMy, M K My, M K M3). Applications
App1, App2, Apps implement modular interfaces { My, My, M3}, {My, M3} and

SAlly

1]

Fig. 5. Integration of three MKM services with three applications using the Augmented
Semantic Alliance Architecture

{ My, M3} respectively. Service M K My, requires abstract document model ADM;
which, in turn, requires module M; hence M(M K M;) = {M;}. This means that
one can integrate service M K M7 into App; and Appy. Similarly, M(M K Ms) =
{M;, M3} and so can be integrated only in App; and M(MKM3) = {M>} and
can be integrated into App; and Apps.

From this example, one can see that the reuse strategy the Augmented
Semantic Alliance Framework has, is more flexible than the one presented in
[Dav+12]. Namely, App1, Apps and Apps clearly share common concepts, but
assigning them an application type that guides reuse strategy, reduces reuse
opportunities. Also, the augmented Sally architecture solves the extensibility
problems described in section [3| as reuse is no longer associated with application
type. Additionally, the augmented architecture also allows abstract document
models to be implemented in the end-user applications themselves, if that makes
integration easier.

6 Implementation

To test the interaction based method of integrating MKM services into appli-
cations, I chose three simple MKM services that cover four, out of five types
of application independent interactions presented in section Namely: con-
tent selection, semantic storage, context menu and application focus. These ser-
vices were integrated into five applications that are part of the LibreOffice suite:
Writer (rich text processor), Calc (spreadsheet application), Impress (slide pre-
sentations), Draw (graphic documents) and Base (database manager). In this
section, I want to shortly introduce the MKM services that I integrated into the
LibreOffice suite. These services are quite different and yet have almost identical

10

User-Service Interaction requirements. The section will end in a discussion about
the effort it took to perform this integration.

ot = LIoneor fioe Mrater
Edit View Insert Format Table Tools Window Help

B HOF MR T2 RIE 29 =P sEmd

| [rextBody '~ ||[sanserit A A 4 A =
Rl 1 ! 2 . 3 . . E . 7

< pard

From Wikipedia, the free encyclopedia

idean nlan
Clear Direct Furﬂttimg H

Font

Ceva's theorem is a theorem about
geometry. Given a triangle ABC, let the lines|
from the vertices to a common point O to me
and F respectively. Then, using signed lengt

a

snglon | MathHub

t intersectiog

o Edit
+ Delete

Read more Add new comment

cubefreetaxicabnumbe

Fig. 6. Mash-up of several screenshots demonstrating the types of LibreOffice Writer
objects that can be connected to ontology concepts by the Concept Linker.

The Concept Linker service, allows linking document contents to ontol-
ogy concepts stored in the MathHub.info portal. The service adds a new
”Link to concept” item in the context menu of the application, if currently se-
lected object(s) can store semantic information. After clicking on the ”"Link to
concept” context item, a window is generated by the Theo screen manager (for
more information see) where one can choose the concept to which se-
lected objects should be linked to. Figure [6] depicts the concept linker service
in a LibreOffice Writer document. One can see that text fragments, formulas,
drawings (segment BE) and text boxes can be linked to ontology concepts. Also,
one can see the Theo window allowing the user to link text box “O” to a concept
from the MathHub. info| portal.

Definition lookup service retrieves the definition of the ontology concept
associated to the currently selected object. The service adds a new ”Get defini-
tion” item in the context menu of the application, if currently selected object
has a concept linked to it. The definition associated to the concept is displayed
in a window generated by the Theo screen manager.

Semantic Navigation presents the user with a graphical representation of
ontology relations associated to the concept selected in the document. Just like
the concept linker and definition lookup services, it adds a context menu item

11

MathHub.info
MathHub.info

“Semantic navigation” which triggers creation of a new window presenting the
ontology relations (Figure . Additionally, if the user right-clicks on a node of a
related concept e.g. vertice, and there is an object V in the document linked to
the concept of vertice, the user is given the possibility to change the document
focus to object V.

Ceva's theorem is a theorem about i

Given a triangle ABC, let the lines AO, BO and it

\ertices|to a common point O to meet oppEZ
respectively. Then, using signed lengths of] ...

AF BD CE_,

FB DC EA

B it ® oo

Show in ceva.odt

Fig. 7. Mash-up of several screenshots demonstrating Semantic Navigation service.

The following table summarizes the types of objects that can be annotated
and support definition lookup and semantic navigation services.

Application |Types of document object
All applications|images, math formulas, text boxes and shapes
Writer text fragments
Calc cell ranges, charts
Impress slides, text fragments
Draw text fragments
Base tables, forms, queries and reports

Even though the document models of the applications in the LibreOffice
suite are very different, the LibreOffice API provides several document type
independent mechanisms to access/modify document’s content and meta-data.
The implementation of the content selection, context menu, semantic storage
and application focus interactions required by the three MKM services, were
implemented using the document model independent API provided by LibreOf-
fice. This meant that only one LibreOffice plugin had to be implemented which
required a similar amount of effort as creating one Alex invader in the SAlly
architecture (= 1 week). Integrating the same services into the SAlly architec-
ture from |[Dav+12|, would have required a 5 weeks investment into the Alex
(invader) plugins.

7 Conclusion

This paper tackles the problem of MKM services lacking adequate tool support
when integrated into end-user applications. The Semantic Alliance framework

12

[Dav+12|, developed for reducing MKM service integration costs without sacri-
ficing usability, was successfully used for integrating MKM services into spread-
sheet|Dav+12], CAD[Koh+13|, text and image [Bre+14] processing software. In
the process of developing these integrations, several extensibility problems of
the framework became very apparent and yet could not be predicted from the
original architecture presented in [Dav+412].

First contribution of this paper is the in-depth integration analysis that
helped identifying the reasons for the extensibility challenges in the SAlly frame-
work. In particular, this analysis captures and categorizes the hidden costs asso-
ciated with decoupling a MKM service into a standalone entity (cost of imple-
menting A in section . While the integration analysis is strictly used for the
SAlly framework, it can be reused for other integration efforts in MKM such as
integration of theorem provers into authoring solutions.

The second and main contribution of this paper is the Augmented Semantic
Alliance architecture that solves the extensibility problems presented in section
and enables more flexible reuse strategies. First experiments with the new
architecture show that end-user applications, sometimes provide major reuse
opportunities and that the new architecture can take full advantage of them.

References

[Bre+14] Thilo Breitsprecher et al. “Semantic support for engineering design
process”. In: DESIGN 2014. to appear in. 2014.

[Dav+12] Catalin David et al. “Semantic Alliance: A Framework for Se-
mantic Allies”. In: Intelligent Computer Mathematics. Conferences
on Intelligent Computer Mathematics (CICM) (Bremen, Germany,
July 9-14, 2012). Ed. by Johan Jeuring et al. LNAI 7362. Berlin and
Heidelberg: Springer Verlag, 2012, pp. 49-64. 1SBN: 978-3-642-31373-
8. URL: http://kwarc.info/kohlhase/papers/mkm12-SAlly.pdfl

[Tan+] Mihnea lancu et al. “System Description: MathHub.info”. submitted
to CICM 2014. URL: http : //kwarc . info/kohlhase / submit /
cicml4-mathhub.pdf.

[Jool1] Jaehun Joo. “Adoption of Semantic Web from the perspective of
technology innovation: A grounded theory approach”. In: Interna-
tional journal of human-computer studies 69.3 (2011), pp. 139-154.

[KK04] Andrea Kohlhase and Michael Kohlhase. “CPoint: Dissolving the
Authors Dilemma”. In: Mathematical Knowledge Management. Ed.
by Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec. Vol. 3119.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp. 175-189. 1SBN: 978-3-540-23029-8. DOI: [10.1007/978-3-540~
27818-4_13. URL: http://dx.doi.org/10.1007/978-3-540-
27818-4_13.

13

http://kwarc.info/kohlhase/papers/mkm12-SAlly.pdf
http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf
http://kwarc.info/kohlhase/submit/cicm14-mathhub.pdf
http://dx.doi.org/10.1007/978-3-540-27818-4_13
http://dx.doi.org/10.1007/978-3-540-27818-4_13
http://dx.doi.org/10.1007/978-3-540-27818-4_13
http://dx.doi.org/10.1007/978-3-540-27818-4_13

[Koh+13]

[SLO4]

[SS10]

Andrea Kohlhase et al. “Full Semantic Transparency: Overcoming
Boundaries of Applications”. In: Human-Computer Interaction — IN-
TERACT 2013. Ed. by Paula Kotzé et al. Vol. 8119. LNCS. Hei-
delberg: Springer, 2013, pp. 406—423. 1SBN: 978-3-642-40476-4. URL:
http://kwarc.info/kohlhase/papers/Interact2013_FST.pdf.
Dick Stenmark and Rikard Lindgren. “Integrating knowledge man-
agement systems with everyday work: Design principles leveraging
user practice”. In: System Sciences, 2004. Proceedings of the 37th
Annual Hawaii International Conference on. IEEE. 2004, 9—pp.
Katharina Siorpaes and Elena Simperl. “Human intelligence in the
process of semantic content creation”. In: World Wide Web 13.1-2
(2010), pp. 33-59.

14

http://kwarc.info/kohlhase/papers/Interact2013_FST.pdf

	Towards an Interaction-based Integration of MKM Services into End-User Applications

