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Abstract. Cylindrical algebraic decomposition(CAD) is a key tool in
computational algebraic geometry, particularly for quantifier elimination
over real-closed fields. When using CAD, there is often a choice for the
ordering placed on the variables. This can be important, with some prob-
lems infeasible with one variable ordering but easy with another. Machine
learning is the process of fitting a computer model to a complex func-
tion based on properties learned from measured data. In this paper we
use machine learning (specifically a support vector machine) to select
between heuristics for choosing a variable ordering, outperforming each
of the separate heuristics.
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1 Introduction

Cylindrical algebraic decomposition (CAD) is a key tool in real algebraic geom-
etry. It was first introduced by Collins [18] to implement quantifier elimination
over the reals, but has since been applied to applications including robot motion
planning [49], programming with complex valued functions [22], optimisation [28§]
and epidemic modelling [15]. Decision methods for real closed fields are of great
use in theorem proving [25]. METITARSKI [1], for example, decides the truth of
statements about special functions using CAD and rational function bounds.
When using CAD, we often have a choice over which variable ordering to use.
It is well known that this choice is very important and can dramatically affect
the feasibility of a problem. In fact, Brown and Davenport [14] presented a class
of problems in which one variable ordering gave output of double exponential
complexity in the number of variables and another output of a constant size.
Heuristics have been developed to help with this choice, with Dolzmann et al. [23]
giving the best known study. However, in CICM last year [8], it was shown that
even the best known heuristic could be misled. Although that paper provided
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an alternative heuristic, this had its own shortcomings, and it now seems likely
that no one heuristic is suitable for all problems.

Our thesis is that the best heuristic to use is dependent upon the problem
considered. However, the relationship between the problems and heuristics is far
from obvious and so we investigate whether machine learning can help with these
choices. Machine learning is a branch of artificial intelligence. It uses statistical
methods to infer information from supplied data which is then used to make
predictions for previously unseen data [2]. We have applied machine learning
(specifically a support vector machine) to the problem of selecting a variable
ordering for both CAD itself and quantifier elimination by CAD, using the nlsat
dataset [50] of fully existentially quantified problems. Our results show that the
choices made by machine learning are on average superior to both any individual
heuristic and to picking a heuristic at random. The results also provide some
new insight on the heuristics themselves. This appears to be the first application
of machine learning to problem formulation for computer algebra, although it
follows recent application to theorem proving [10,31].

We conclude the introduction with background theory on CAD and machine
learning. Then in Sections 2, 3 and 4 we describe our experiment, its results
and how they may be extended in the future. Finally in Section 5 we give our
conclusions and ideas for future work.

1.1 Quantifier elimination and CAD

Let Q; € {3,V} be quantifiers and ¢ be some quantifier free formula. Then given

D(x1,. . x) = Qrp1Tht1 - - Qupn O(X1,. .., Tp),

quantifier elimination (QE) is the problem of producing a quantifier free formulae
Y(x1,...,x) equivalent to . In the case k = 0 this reduces to the decision prob-
lem, is @ true? Tarski proved that QE was possible for semi-algebraic formulae
(polynomials and inequalities) over R [47]. However, the complexity of Tarski’s
method is non-elementary (indescribable as a finite tower of exponentials) and so
CAD was a major breakthrough when introduced, despite complexity doubly ex-
ponential in the number of variables. For some problems QE is possible through
algorithms with better complexity (see for example the survey by Basu [5]), but
CAD implementations remain the best general purpose approach.

Collins’ algorithm [3] works in two stages. First, projection calculates sets of
projection polynomials S; in variables (21, ..., z;). This is achieved by repeatedly
applying a projection operator onto a set of polynomials, producing a set with
one variable fewer. We start with the polynomials from ¢ and eliminate variables
this way until we have the set of univariate polynomials S;.

Then in the lifting stage, decompositions of real space in increasing dimen-
sions are formed according to the real roots of those polynomials. First, the real
line is decomposed according to the roots of the polynomials in S7. Then over
each cell ¢ in that decomposition, the bivariate polynomials So are taken at a
sample point and a decomposition of ¢ X R is produced according to their roots.



Taking the union gives the decomposition of R? and we proceed this way to
a decomposition of R™. The decompositions are cylindrical (projections of any
two cells onto their first ¢ coordinates are either identical or disjoint) and each
cell is a semi-algebraic set (described by polynomial relations). Collins’ original
algorithm used a projection operator which guaranteed CADs of R™ on which
the polynomials in ¢ had constant sign, and thus ¢ constant truth value, on each
cell. Hence only a single sample point from each cell needed to be tested and the
equivalent quantifier free formula v could be generated from the semi-algebraic
sets defining the cells in the CAD of R¥ for which & is true.

Since the publication of the original algorithm, there have been numerous
improvements, optimisations and extensions of CAD (with a summary of the first
20 years given by Collins [19]). Of great importance is the improvement to the
projection operator used. Hong [29] proved that a refinement of Collins’ operator
was sufficient and then McCallum [37] presented a further refinement which
could only be used for input that was well-oriented and was in turn improved
by Brown [11]. Further refinements are possible by removing the need for sign-
invariance of polynomials while maintaining truth-invariance of a formula, with
McCallum [38] presenting an operator for use when an equational constraint
is present (an equation logically implied by a formula) and Bradford et al. [7]
extending this to the case of multiple formulae. Collins and Hong [20] described
Partial CAD for QE, where lifting over a cell is aborted if there already exists
sufficient information to determine the truth of ¢ on that cell. Other recent CAD
developments of particular note include the use of symbolic-numeric techniques
in the lifting stage [33,45] and the alternative to projection and lifting offered
by decompositions of complex space via regular chains technology [17].

When using CAD we have to assign an ordering to the variables (the labels ¢
on the x; in the discussion above). This dictates the order in which the variables
are eliminated during projection and thus the sub-spaces for which CADs are
produced en route to a CAD of R™. For some applications this order is fixed
but for others there may be a free or constrained choice. When using CAD for
QE we must project quantified variables before unquantified ones. Further, the
quantified variables should be projected in the order they occur, unless successive
ones have the same quantifier in which case they may be swapped. The ordering
can have a big effect on the output and performance of CAD 8,14, 23].

1.2 Machine Learning

Machine learning [2] deals with the design of programs that can learn rules from
data. This is often a very attractive alternative to manually constructing them
when the underlying functional relationship is very complex. Machine learning
techniques have been widely used in many fields, such as web searching [6], text
categorization [42], robotics [44], expert systems [27] and many others.

Various machine learning techniques have been developed. McCulloch and
Pitts [39] created the first computational model for neural networks called thresh-
old logic. Following that, Rosenblatt [40] proposed the perceptron as an iterative
algorithm for supervised classification of an input into one of several possible



non-binary outputs. A later development was the decision tree [2], which is a
simple representation for classifying examples. The main idea here is to apply
serial classifications which refine the output state. At the same time as the deci-
sion tree was being developed, the multi-layer perceptron [30] was explored. It is
a modification of the standard linear perceptron and can distinguish data that
are non-linearly separable.

In the last decade, the use of machine learning has spread rapidly following
the invention of the Support Vector Machine (SVM) [41]. This was a develop-
ment of the perceptron approach and gives a powerful and robust method for
both classification and regression. Classification refers to the assignment of input
examples into a given set of classes (the output being the class labels). Regression
refers to a supervised pattern analysis in which the output is real-valued. The
SVM technology can deal efficiently with high-dimensional data, and is flexible
in modelling diverse sources of data. The standard SVM classifier takes a set of
input data and predicts one of two possible classes from the input. Given a set
of examples, each marked as belonging to one of two classes, an SVM training
algorithm builds a model that assigns new examples into one of the classes. The
examples used to fit the model are called training examples.

An important concept in the SVM theory is the use of a kernel function [43],
which maps data into a high dimensional kernel-defined feature space and then
separates samples in the transformed space. Kernel functions enable operations
in feature space without ever computing the coordinates of the data in that
space. Instead they simply compute the inner products between all pairs of data
vectors. This operation is generally computationally cheaper than the explicit
computation of the coordinates.

The machine learning experiment described in this paper uses SVM-LIGHT
(see Joachims [34]) which is an implementation of SVMs in C. The SVM-LIGHT
software consists of two programs: SVM LEARN and SVM CLASSIFY. SVM
LEARN fits the model parameters based on the training data and user inputs
(such as the kernel function and the parameter values). SVM CLASSIFY uses the
generated model to classify new samples. It calculates a hyperplane of the n-
dimensional transformed feature space, which is an affine subspace of dimension
n — 1 dividing the space into two corresponding to the two distinct classes. SVM
CLASSIFY outputs margin values which are a measure of how far the sample
is from this separating hyperplane. Hence the margins are a measure of the
confidence in a correct prediction. A large margin represents high confidence in
a correct prediction. The accuracy of the generated model is largely dependent
on the selection of the kernel functions and parameter values.

2 Methodology

2.1 CAD implementation and heuristics

For the machine learning experiment we decided to focus on a single CAD im-
plementation, QEPCAD [12]. We note that other CAD implementations are avail-
able, as discussed further in Section 4.



QEPCAD is an interactive command line program written in C for performing
Quantifier Elimination with Partial CAD. It was chosen as it is a competitive
implementation of both CAD and QE that also allows the user some control
and information during its execution. We used QEPCAD with its default settings
which implement McCallum’s projection operator [37] and partial CAD [20]. Tt
can also makes use of an equational constraint automatically (via the projection
operator [38]) when one is explicit in the formula, (where ezplicit means the
formula is a conjunction of the equational constraint with a sub-formula).

In the experiment we used three existing heuristics for picking a CAD variable
ordering:

Brown: This heuristic chooses a variable ordering according to the following
criteria, starting with the first and breaking ties with successive ones:
(1) Eliminate a variable first if it has lower overall degree in the input.
(2) Eliminate a variable first if it has lower (maximum) total degree of those
terms in the input in which it occurs.
(3) Eliminate a variable first if there is a smaller number of terms in the
input which contain the variable.
It is labelled after Brown who suggested it [13].
sotd: This heuristic constructs the full set of projection polynomials for each
permitted ordering and selects the ordering whose corresponding set has
the lowest sum of total degrees for each of the monomials in each of the
polynomials. It is labelled sotd for sum of total degree and was suggested
by Dolzmann, Seidell and Sturm [23], whose study found it to be a good
heuristic for both CAD and QE by CAD.
ndrr: This heuristic constructs the full set of projection polynomials for each
ordering and selects the ordering whose set has the lowest number of distinct
real roots of the univariate polynomials within. It is labelled ndrr for number
of distinct real roots and was suggested by Bradford et al. [8]. Ndrr was shown
to assist with examples where sotd failed.

Brown’s heuristic has the advantage of being very cheap, since it acts only on the
input and checks only simple properties. The ndrr heuristic is the most expensive
(requiring real root isolation), but is the only one to explicitly consider the real
geometry of the problem (rather than the geometry in complex space).

All three heuristics may identify more than one variable ordering as a suitable
choice. In this case we took the heuristic’s choice to be the first of these after
they had been ordered lexicographically. !

! This final choice may depend on the convention used for displaying the variable
ordering. QEPCAD and the notes where Brown introduces his heuristic [13] use the
convention of ordering variables from left to right so that the last one is projected
first. On the other hand, MAPLE and the papers introducing sotd and ndrr [8, 23]
use the opposite convention. The heuristics were implemented in MAPLE and so
ties were broken by picking the first lexicographically on the second convention.
This corresponds to picking the first under a reverse lexicographical order under the
QEPCAD convention. The important point is that all three heuristics had ties broken
under the same convention and so were treated fairly.



2.2 Problem data

Problems were taken from the nlsat dataset [50], chosen over more traditional
CAD problem sets (such as Wilson et al. [48]) as these did not have sufficient
numbers of problems for machine learning. 7001 three-variable CAD problems
were extracted for our experiment. The number of variables was restricted for
two reasons. First to make it feasible to test all possible variable orderings and
second to avoid the possibility that QEPCAD will produce errors or warnings
related to well-orientedness with the McCallum projection [37].

Two experiments were undertaken, applying machine learning to CAD itself
and to QE by CAD. QE is clearly very important throughout engineering and
the sciences, but increasingly CAD has been applied outside of this context,
as discussed in the introduction. We performed separate experiments since for
quantified problems QEPCAD can use the partial CAD techniques to stop the
lifting process early if the outcome is already determined, while the full process
is completed for unquantified ones and the two outputs can be quite different.

The problems from the nlsat dataset are all fully existential (satisfiability or
SAT problems). A second set of problems for the quantifier free experiment was
obtained by simply removing all quantifiers. An example of the QEPCAD input
for a SAT problem is given in Figure 1 with the corresponding input for the
unquantified problem in Figure 2. Of course, for such quantified problems there
are better alternatives to building a CAD (see for example the work of Jovanovic
and de Moura [36]). However, our decision to use only SAT problems was based
on availability of data rather than it being a requirement of the technology, and
so we focus on CAD only here and discuss how we might generalise our data in
Section 4. For both experiments, the problems were randomly split into training
sets (3545 problems in each), validation sets (1735 problems in each) and test
sets (1721 problems in each) 2.

2.3 Evaluating the heuristics

Since each problem has three-variables and all the quantifiers are the same, all
six possible variable orderings are admissible. For each ordering we had QEPCAD
build a CAD and measured the number of cells. The best ordering was defined as
the one resulting in the smallest cell count, (and if more than one ordering gives
the minimal both orderings are considered the best). The decision to focus on
cell counts (rather than say computation time) was made so that our experiment
could validate the use of machine learning to CAD theory, rather than just the
QEPCAD implementation. Further, it is usually the case that cell counts and
timings are strongly correlated.

The heuristics (Brown, sotd and ndrr) have been implemented in MAPLE (as
part of the freely available ProjectionCAD package [26]) and for each problem
the orderings suggested by the heuristics were recorded and compared to the cell

2 The data is available at http://www.cl.cam.ac.uk/~zh242/data.



Fig. 1: Sample QEPCAD input for a quantified problem.

(x0,x1,x2)

0

(Ex0) (Ex1) (Ex2) [[((x0 x0) + ((x1 x1) + (x2 x2))) = 1]1].
go

go

go

d-stat

go

finish

Fig. 2: Sample QEPCAD input for a quantifier free problem.

(x0,x1,x2)

3

[[((x0 x0) + ((x1 x1) + (x2 x2))) = 11].
go

go

d-proj-factors

d-proj-polynomials

go

d-fpc-stat

go

counts produced by QEPCAD 3. Note that all three heuristics do not discriminate
on the structure of any quantifiers. As discussed above, some heuristics are more
expensive than others. However, since none of the costs were prohibitive for our
data set they are not considered here.

Machine learning was applied to predict which of the three heuristics will
give an optimal variable ordering for a given problem, where optimal means the
lowest cell count of the selected CADs. Note that in the quantified case QEPCAD
can collapse stacks when sufficient truth values for the constituent cells have
been discovered to determine a truth value for the base cell. Hence, since our
problems are all fully existential, the output for all quantified problems is always
a single cell: true or false. Therefore, in these cases it was not the number of cells
in the output that was used but instead the number of cells constructed during
the process (hence the statistics commands in Figures 1 and 2 differ).

2.4 Problem features

To apply machine learning, we need to identify features of the CAD problems
that might be relevant to the correct choice of the heuristics. A feature is an

3 When comparing care must be taken when changing between the different variable
ordering conventions (see Footnote 1).



aspect or measure of the problem that may be expressed numerically. Table 1
shows the 11 features that we identified, where (x, x1, xz2) are the three variable
labels used in all our problems. The number of features is quite small, compared
to other machine learning experiments. They were chosen as easily computable
features of the problems which could affect the performances of the heuristics.
Other features were considered (such as the maximum coefficient and the pro-
portion of constraints that were equations) but were not found to be useful.
Further investigation into feature selection may be a topic of our future work.

Table 1: Description of the features used. The proportion of a variable occurring in
polynomials is the number of polynomials containing the variable divided by total num-
ber of polynomials. The proportion of a variable occurring in monomials is the number
of terms containing the variable divided by total number of terms in polynomials.

Feature number Description

Number of polynomials.

Maximum total degree of polynomials.
Maximum degree of x¢p among all polynomials.
Maximum degree of x1 among all polynomials.
Maximum degree of x2 among all polynomials.
Proportion of x¢ occurring in polynomials.
Proportion of x1 occurring in polynomials.

Proportion of x2 occurring in polynomials.

© 00 J O Ut = W N

Proportion of xp occurring in monomials.

[y
o

Proportion of x1 occurring in monomials.

=
=

Proportion of x2 occurring in monomials.

Each feature vector in the training set was associated with a label, +1 (pos-
itive examples) or —1 (negative examples), indicating in which of two classes it
was placed. To take Brown’s heuristic as an example, a corresponding training
set was derived with each problem labelled +1 if Brown’s heuristic suggested a
variable ordering with the lowest number of cells, or —1 otherwise.

The features could all be easily calculated from the problem input using
MAPLE. For example. if the input formula is defined using the set of polynomials

{—6:103 — a3 —1, xéxg + 921, xo+ x% — zowp — 5}
then the problem will have the feature vector

1. 511
4,1,3,1,2,1, =, -, | .
375) ) )37 737 )9)9)3

After the feature generation process, the training data (feature vectors) were
normalized so that each feature had zero mean and unit variance across the set.
The same normalization was then also applied to the validation and test sets.



2.5 Parameter Optimization

SVM-LIGHT was used to do the classification for this experiment. As stated
in Section 1.2, SVMs use kernel functions to map the data into higher dimen-
sional spaces where the data may be more easily separated. SVM-LIGHT has
four standard kernel functions: linear, polynomial, sigmoid tanh and radial basis
function. For each kernel function, there are associated parameters which must
be set. An earlier experiments applying machine learning to an automated the-
orem prover [9] found the radial basis function (RBF) kernel performed well in
finding a relation between the simple algebraic features and the best heuristic
choice. Hence the same kernel was selected for this experiment (other kernel
functions may be tested in future work). The RBF function is defined as:

K (2, 21) = exp (2 — a1|]?)

where K is the kernel function, z and z/ are feature vectors. There is a single
parameter 7 in the RBF kernel function. Besides the parameter ~y, two other
parameters are involved in the SVM fitting process. The parameter C' governs
the trade-off between margin and training error, and the cost factor j is used
to correct imbalance in the training set and we set it equal to the ratio between
negative and positive samples. Given a training set, we can easily compute the
value of parameter j by looking at the sign of the samples. However, it is not
that trivial to find the optimal values of v and C.

In machine learning, Matthew’s correlation coefficient (MCC) [4] is often used
to evaluate the performance of the binary classifications. It takes into account
true and false positives and negatives:

TP« TN — FP « FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

In this equation, TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives and FN is the number of false
negatives. The denominator is set to 1 if any sum term is zero. This measure has
the value 1 if perfect prediction is attained, 0 if the classifier is performing as a
random classifier, and —1 if the classifier exactly disagrees with the data.

A grid-search optimisation procedure was used with the training and valida-
tion set, involving a search over a range of (v, C') values to find the pair which
would maximize MCC. We tested a commonly used range of value of v (varied
between 2715 2714 213 93) and C (varied between 27° 274 273 . 215)
in our grid search process [32]. Following the completion of the grid-search, the
values for kernel function and model parameters giving optimal MCC results
were selected for each individual CAD heuristic classifier. We also performed a
similar calculation, selecting parameters to maximise the Fj-score [35], but the
results using MCC were superior.

The classifiers with optimal (v, C') were applied to the test set to output the
margin values [21]. In an ideal case, only one classifier would return a positive
result for any problem, where selecting a best heuristic is just a case of observing



which classifier returns a positive result. However, in practice, more than one
classifier will return a positive result for some problems, while no classifiers may
return a positive for others. Thus, instead we used the relative magnitudes of the
classifiers in our experiment. The classifier with most positive (or least negative)
margin was selected to indicate the best decision procedure for the selection.

3 Results

The experiment was run as described in Section 2. We use the number of prob-
lems for which a selected variable ordering is optimal to measure the efficacy of
each heuristic separately, and of the heuristic selected by machine learning.

Table 2 breaks down the results into a set of mutually exclusive outcomes
that describe all possibilities. The column headed ‘Machine Learning’ indicates
the heuristic selected by the machine learned model with the next three columns
indicating each of the fixed heuristics tested. For each of these four heuristics, we
may ask the question “Did this heuristic select the optimal variable ordering?” A
‘Y’ in the table indicates yes and an ‘N’ indicates no, with each of the 13 cases
listed covering all possibilities. Note that at least one of the fixed heuristics must
have a ‘Y’ since, by definition, the optimal ordering is obtained by at least one
heuristic while if they all have a Y it is not possible for machine learning to
fail. For each of these cases we list the number of problems for which this case
occurred for both the quantifier free and quantified experiments.

Table 2: Categorising the problems into a set of mutually exclusive cases characterised
by which heuristics were successful.

Case Machine Learning sotd ndrr Brown Quantifier Free Quantified

1 Y Y Y Y 399 573
2 Y Y Y N 146 96
3 N Y Y N 39 24
4 Y Y N Y 208 232
5 N Y N Y 35 43
6 Y N Y Y 64 57
7 N N Y Y 7 11
8 Y Y N N 106 66
9 N Y N N 106 75
10 Y N Y N 159 101
11 N N Y N 58 89
12 Y N N Y 230 208
13 N N N Y 164 146




For many problems more than one heuristic selects the optimal variable or-
dering and the probability of a randomly selected heuristic giving the optimal
ordering depends on how many pick it. For example, a random selection would
be successful 1/3 of the time if one heuristic gives the optimal ordering or 2/3
of the time if two heuristics do so.

In Table 2, case 1 is where machine learning cannot make any difference as
all heuristics are equally optimal. We compare the remaining cases pairwise. For
each pair, the behaviour of the fixed heuristics are identical and the difference
is whether or not machine learning picked a winning heuristic (one of the ones
with a Y). We see that in each case machine learning succeeds far more often
than fails. For each pair we can compare with a random heuristic selection. For
example, consider cases 2 and 3 where sotd and ndrr are successful heuristics and
Brown is not. A random selection would be successful 2/3 of the time. For the
quantifier free examples, machine learned selection is successful 146/(146 + 39)
or approximately 79% of the time, which is significantly better.

We repeated this calculation for the quantified case and the other pairs, as
shown in Table 3. In each case the values have been compared to the chance of
success when picking a random heuristic, and so there are two distinct sets in
Table 3: those where only one heuristic was optimal and those where two are. We
see that machine learning did better for some classes of problems than others.
For example in quantifier free examples, when only one heuristic is optimal
machine learning does considerably better if that one is ndrr, while if only one is
not optimal machine learning does worse if is Brown. Nevertheless, the machine
learning selection is better than random in every case in both experiments.

Table 3: Proportion of examples where machine learning picks a successful heuristic.

sotd ndrr Brown Quantifier Free Quantified
Y Y N 79% (>67%) 80% (>67%)
Y N Y 86% (>67%) 84% (>67%)
N Y Y 90% (>67%) 84% (>67%)
Y N N 50% (>33%) 47% (>33%)
N Y N 73% (>33%) 53% (>33%)
N N Y 58% (>33%) 59% (>33%)

By summing the numbers in Table 2 in which Y appears in a row for the
machine learned selection and each individual heuristic, we get Table 4. This
compares, for both the quantifier free and quantified problem sets, the learned
selection with each of the CAD heuristics on their own.

Of the three heuristics, Brown seems to be the best, albeit by a small margin.
Its performance is a little surprising, both because the Brown heuristic is not so
well known (having never been formally published) and because it requires little
computation (taking only simple measurements on the input).



Table 4: Total number of problems for which each heuristic picks the best ordering.

Machine Learning sotd ndrr Brown
Quantifier free 1312 1039 872 1107
Quantified 1333 1109 951 1270

For the quantifier free problems there were 399 problems where every heuris-
tic picked the optimal, 499 where two did and 823 where one did. Hence for this
problem set the chances of picking a successful heuristic at random is

100 ) .
Ty (399 +499 % § + 823+ §) ~ 58%

which compares with 100%1312/1721 ~ 76% for machine learning. For the quan-
tified problems the figures are 64% and 77%. Hence machine learning performs
significantly better than a random choice in both cases. Further, if we were to
use only the heuristic that performed the best on this data, the Brown heuristic,
then we would pick a successful ordering for approximately 64% of the quanti-

fier free problems and 74% of the quantified problems. So we see that a machine
learned choice is also superior to using any one heuristic.

4 Possibilities for extending the experiment

Although a large data set of real world problems was used, we note that in some
ways the data was quite uniform. A key area of future work is experimentation
on a wider data set to see if these results, both the benefit of machine learning
and the superiority of Brown’s heuristic, are verified more generally. An initial
extension would be to relax the parameters used to select problems from the
nlsat dataset, for example by allowing problems with more variables.

One key restriction with this dataset is that all problems have one block of ex-
istential quantifiers. Note that our restriction to this case followed the availability
of data rather than any technical limitation of the machine learning. Possible
ways to generalise the data include randomly applying quantifiers to the the
existing problems, or randomly generating whole problems. However, this would
mean the problems no longer originate from real applications, and it has been
noted in the past that random problems for CAD can be unrepresentative.

We do not suggest SVM as the only suitable machine learning method for this
experiment, but overall a SVM with the RBF kernel worked well here. It would
be interesting to see if other machine learning methods could offer similar or even
better selections. Further improvements may also come from more work on the
feature selection. The features used here were all derived from the polynomials
involved in the input. One possible extension would be to consider also the type
of relations present and how they are connected logically (likely to be particularly
beneficial if problems with more variables or more varied quantifiers are allowed).



A key extension for future work will be the testing of other heuristics. For
example the greedy sotd heuristic [23] which chooses an ordering one variable at
a time based on the sotd of new projection polynomials or combined heuristics,
(where we narrow the selection with one and then breaking the tie with another).
We also note that there are other questions of CAD problem formulation besides
variable ordering [8] for which machine learning might be of benefit.

Finally, we note that there are other CAD implementations. In addition to
QEPCAD there is ProjectionCAD [26], RegularChains [17] and SyNRAC [33] in
MAPLE, MATHEMATICA [46] and Redlog [24] in REDUCE. Each implementation
has its own intricacies and often different underlying theory so it would be inter-
esting to test if machine learning can assist with these as it does with QEPCAD.

5 Conclusions

We have investigated the use of machine learning for making the choice of which
heuristic to use when selecting a variable ordering for CAD, and quantifier elim-
ination by CAD. The experimental results confirmed our thesis, drawn from
personal experience, that no one heuristic is superior for all problems and the
correct choice will depend on the problem. Each of the three heuristics tested
had a substantial set of problems for which they were superior to the others and
so the problem was a suitable application for machine learning.

Using machine learning to select the best CAD heuristic yielded better re-
sults than choosing one heuristic at random, or just using any of the individual
heuristics in isolation, indicating there is a relation between the simple algebraic
features and the best heuristic choice. This could lead to the development of a
new individual heuristic in the future.

The experiments involved testing heuristics on 1721 CAD problems, certainly
the largest such experiment that the authors are aware of. For comparison, the
best known previous study on such heuristics [23] tested with six examples. We
observed that Brown’s heuristic is the most competitive for our example set, and
this is despite it involving less computation than the others. This heuristic was
presented during an ISSAC tutorial in 2004 (see Brown [13]), but does not seem
to be formally published. It certainly deserves to be better known.

Finally, we note that CAD is certainly not unique amongst computer algebra
algorithms in requiring the user to make such a choice of problem formulation.
More generally, computer algebra systems (CASs) often have a choice of possible
algorithms to use when solving a problem. Since a single formulation or algorithm
is rarely the best for the entire problem space, CASs usually use meta-algorithms
to make such choices, where decisions are based on some numerical parameters
[16]. These are often not as well documented as the base algorithms, and may be
rather primitive. To the best of our knowledge, the present paper appears to be
the first applying machine learning to problem formulation for computer algebra.
The positive results should encourage investigation of similar applications in the
field of symbolic computation.
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