Skip to main content

Equivalence Checking in Multi-level Quantum Systems

  • Conference paper
Reversible Computation (RC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Included in the following conference series:

Abstract

Motivated by its superiority compared to conventional solutions in many applications, quantum computation has intensely been investigated from a theoretical, physical, and design perspective. While these investigations mainly focused on two-level quantum systems, recently also advantages and benefits of higher-level quantum systems became evident. Though this led to several approaches for the representation and realization of quantum functionality in different dimensions, no efficient solution for verifying their equivalence has been proposed yet. In the present paper, we address this problem. We propose a scheme which is capable of verifying the equivalence of two quantum operations regardless of the dimension of their underlying quantum system. The proposed scheme can be incorporated into data-structures such as Quantum Multiple-Valued Decision Diagrams (QMDD) particularly suited for the representation of quantum functionality and, by this, enables an efficient verification. Experiments confirm the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD 32(6), 818–830 (2013)

    Article  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  3. Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Information Processing Letters 75(3), 101–107 (2000)

    Article  MathSciNet  Google Scholar 

  4. Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum circuits for d-level systems. Physical Review Letters 94(23), 230502 (2005)

    Article  Google Scholar 

  5. Cabello, A., D’Ambrosio, V., Nagali, E., Sciarrino, F.: Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality. Physical Review A 84(3), 030302 (2011)

    Google Scholar 

  6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Physical Review Letters 74(20), 4091–4094 (1995)

    Article  Google Scholar 

  7. Di, Y.M., Wei, H.R.: Synthesis of multivalued quantum logic circuits by elementary gates. Physical Review A 87, 012325 (2013)

    Google Scholar 

  8. Galiautdinov, A.: Generation of high-fidelity controlled-not logic gates by coupled superconducting qubits. Physical Review A 75(5), 052303 (2007)

    Google Scholar 

  9. Greentree, A.D., Schirmer, S., Green, F., Hollenberg, L.C., Hamilton, A., Clark, R.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Physical Review Letters 92(9), 097901 (2004)

    Google Scholar 

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  11. Klimov, A., Guzman, R., Retamal, J., Saavedra, C.: Qutrit quantum computer with trapped ions. Physical Review A 67(6), 062313 (2003)

    Google Scholar 

  12. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Physics 5(2), 134–140 (2008)

    Article  Google Scholar 

  13. Mc Hugh, D., Twamley, J.: Trapped-ion qutrit spin molecule quantum computer. New Journal of Physics 7(1), 174 (2005)

    Article  MathSciNet  Google Scholar 

  14. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press (2007)

    Google Scholar 

  15. Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible and quantum circuits. In: Int’l Symp. on Multi-Valued Logic, p. 30 (2006)

    Google Scholar 

  16. Moreva, E., Maslennikov, G., Straupe, S., Kulik, S.: Realization of four-level qudits using biphotons. Physical Review Letters 97(2), 023602 (2006)

    Google Scholar 

  17. Muthukrishnan, A., Stroud Jr, C.: Multivalued logic gates for quantum computation. Physical Review A 62(5), 052309 (2000)

    Google Scholar 

  18. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Cleland, A.N., et al.: Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)

    Article  Google Scholar 

  19. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  20. Niemann, P., Wille, R., Drechsler, R.: On the “Q” in QMDDs: Efficient representation of quantum functionality in the QMDD data-structure. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 125–140. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. O’Brien, J.L., Akira Furusawa, J.V.: Photonic quantum technologies. Nature Photonics 3(12), 687–695 (2009)

    Article  Google Scholar 

  22. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conf., pp. 36–41 (2012)

    Google Scholar 

  23. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Foundations of Computer Science, 124–134 (1994)

    Google Scholar 

  24. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum circuits and states. In: Int’l Conf. on CAD, pp. 69–74 (2007)

    Google Scholar 

  25. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer, New York (December 2009)

    Google Scholar 

  26. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)

    Google Scholar 

  27. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

  28. Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits. Quantum Information & Computation 10(9&10), 721–734 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Niemann, P., Wille, R., Drechsler, R. (2014). Equivalence Checking in Multi-level Quantum Systems. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics