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Abstract. The sheer size of commodity operating system kernels makes them a
prime target for local attackers aiming to escalate privileges. At the same time,
as much as 90% of kernel functions are not required for processing system calls
originating from a typical network daemon. This results in an unnecessarily high
exposure. In this paper, we introduce kRazor, an approach to reduce the kernel’s
attack surface by limiting the amount of kernel code accessible to an application.
KRAZOR first traces individual kernel functions used by an application. KRAZOR
can then detect and prevent uses of unnecessary kernel functions by a process. This
step is implemented as a kernel module that instruments select kernel functions.
A heuristic on the kernel function selection allows KRAZOR to have negligible
performance overhead. We evaluate results under real-world workloads for four
typical server applications. Results show that the performance overhead and false
positives remain low, while the attack surface reduction can be as high as 80%.

1 Introduction

Vulnerabilities in commodity operating-system kernels, such as Windows, OS X, Linux,
and their mobile counterparts, are routinely exploited. For instance, the Linux kernel had
more than 100 Common Vulnerabilities and Exposures (CVE) entries in 2013 and recent
public local privilege escalation exploits, e.g., for CVE-2013-2094 and CVE-2012-0056.

As better exploit hardening and sandboxing mechanisms are deployed for protecting
user-space processes, the interest in attacking the kernel increases for attackers. For
example, some iPhone jailbreaks operated with the help of iOS kernel exploits [11].
More recently, during the 2013 Pwnium contest, an attacker escaped the Chromium
browser’s sandbox by exploiting a Linux kernel vulnerability [12].

Intuitively, many kernel features are unnecessary, especially when operating a work-
load that is known in advance, such as a web server or a router. Yet those features increase
the Trusted Computing Base (TCB) size, and existing solutions such as recompiling the
kernel with less feature (kernel specialization), is difficult to adopt in practice, e.g., due
to the loss of distribution support.

In this paper, we explore and compare novel and lightweight run-time techniques to
reduce the kernel’s attack surface on a per-application basis, quantify the attack surface
reduction achieved by each of them, and consider performance as well as false positive
trade-offs.
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As each application makes use of distinct kernel functionality, we scope the use
of kernel functionality per-application. To do so, we implement KRAZOR, a proof-of-
concept tool, that reduces the per-application attack surface by instrumenting the kernel
and preventing access to a set of functions, with only small performance penalties.
Because this approach simply requires loading a kernel module and does not require
recompilation or binary rewriting, the approach is easy to deploy in practice. The limita-
tions of KRAZOR are that of any learning-based approach: false positives, whereby a
kernel function has been incorrectly learned as unnecessary, can happen. To demonstrate
the feasibility of our approach, we deploy KRAZOR on a server used for real-world
workloads for more than a year, and observe no false positives during a full year.

The approach is structured in four phases designed to meet the challenges of de-
ploying a low overhead and low false-positive run-time attack surface reduction tool.
Performance overhead is kept low by avoiding to instrument frequently-called kernel
functions, and false positives can be reduced by grouping functions that are likely to be
called under similar conditions, at the cost of lower attack surface reduction.

Unlike methods such as anomalous system call monitoring [15, 25, 31, 45, 54] or
system call sandboxing [2, 9, 18, 19, 46], KRAZOR instruments at the level of individual
kernel functions (and not merely the system call interface). This makes the approach
quantifiable, and non-bypassable.

We quantify security benefits by using the attack surface measurement framework
described in [34]. The attack surface can essentially be computed by defining entry points
for the attacker (system calls) and performing reachability analysis over the kernel call
graph. Because KRAZOR intercepts calls to individual kernel functions, it is particularly
well-suited for measurements by such a framework. In turn, this quantification enables
objective comparison of security trade-offs between KRAZOR variations.

The non-bypassable property is achieved by applying the complete mediation princi-
ple: we reckon that, in the context of attack surface reduction, kernel functions can be
considered as resources to which access must be authorized. A reliable way to retrofit
such an authorization mechanism is to place authorization hooks as close to the resource
as possible, which we achieve by instrumenting the entry of most kernel functions. This
contrasts with existing system-call interposition techniques which can only reduce kernel
attack surface at the coarse granularity of the system call interface. Therefore, they
cannot provide reliable metrics on the amount of kernel code removed from the attack
surface.

Our evaluation results show that by varying the nature of the analysis phase, it is
possible to provide a trade-off between attack surface reduction and the minimal time
span of the learning phase. For instance, it is possible to improve attack surface reduction
from 30% to 80% (when compared to the attack surface of the kernel with respect to an
unprivileged attacker controlling a local process in the absence of KRAZOR), by making
the learning phase twice as long.

The main contributions of this paper are:

— A quantifiable, automated and non-bypassable, run-time attack surface reduction
tool, KRAZOR, that operates by learning the kernel functions necessary for a given
workload on a given system, and applies it at the granularity of an application.
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Compatibility Performance Non-Bypassable Quantifiable Automated

Microkernel - + v v n/a
Kernel specialization - v v v v
Anomalous syscall v + - - v
Seccomp v v + - -
KRAZOR v + v v v

Table 1. Succinct comparison of various approaches that can reduce the kernel attack surface. The
term compatibility refers to the ease of using the approach with existing software, middleware or
hardware, and the term quantifiable refers to the existence of attack surface measurements. The +
sign refers to cases where results may vary between good (v') and bad (-).

— A case study: a long-duration, real-world measurement of the attack surface reduc-
tion and false positives achieved by KRAZOR, which also serves as a demonstration
that a large part of the system-call reachable kernel code-base is not used for many
traditional, security-sensitive applications.

— Quantification of the security benefits of run-time attack surface reduction under
four distinct approaches for false-positive reduction.

The remainder of this paper is structured as follows: Section 2 presents related
work. Section 3 provides background on security metrics and motivates the benefits
and challenges of run-time attack surface reduction. Section 4 presents the design and
implementation of KRAZOR. Section 5 evaluates attack surface reduction, false-positives,
and performance. Finally, we discuss advantages and limitations in Section 6, and
conclude the paper in Section 7.

2 Related work

Two approaches can be envisioned to reduce the attack surface of the kernel: either
making the kernel smaller (or switching to smaller kernels, which is often not an option
in practice), or putting in place run-time mechanisms that restrict the amount of code
accessible in the running kernel.

This works focuses on the run-time mechanisms: although there has been extensive
work in providing better sandboxing and access control for commodity operating systems,
little has been done to reduce kernel attack surface and quantify improvements. Most
approaches that may reduce kernel attack surface have used the system call interface
(or other existing hooks in the kernel, such as LSM hooks for Linux). In particular, no
quantification of run-time kernel attack surface reduction has been done so far for these
techniques. The advantages of each area of work are summarized in Table 1.

2.1 Smaller kernels

The following summarizes related work on reducing the kernel attack surface at compile-
time and, more generally, designing and developing smaller kernels.
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Micro-kernels. Micro-kernels are designed with the explicit goal of being as small
and modular as possible [1, 37]. This design goal led to micro-kernels being a good
choice for security-sensitive systems [23, 26, 29]. For instance, MINIX 3 [22-24], is
a micro-kernel designed for security: in particular, its kernel is particularly small, at
around 4,000 source lines of code (SLOC). A significant practical drawback of all these
approaches is the lack of compatibility with the wide variety of existing middleware,
applications, and device drivers, which render their adoption difficult, except when
used as hypervisors [20, 21] to host commodity OSes. However, when hypervisors are
used, isolation is only provided between the guest operating systems, which might not
be sufficient in some use cases. When this isolation is sufficient, it can translate into a
significant performance overhead over single-OS implementations with more lightweight
solutions such as containers [32].

Kernel extension fault isolation. To remedy with this lack of “compatibility”, one
can attempt to isolate kernel modules of commodity OSes directly, especially device
drivers [3, 6, 39, 52]. One of the first such approaches, Nooks [52], can wrap calls
between device drivers and the core kernel, and make use of virtual memory protection
mechanisms, leading to a more reliable kernel in the presence of faulty drivers. However,
in the presence of a malicious attacker who can compromise such devices, this is
insufficient, and more involved approaches are required: e.g., LXFI [39], which requires
interfaces between the Linux kernel and extensions to be manually annotated. A notable
drawback common to all the techniques is that, by design, they only target kernel modules
and not the core kernel.

Kernel specialization. Manually modifying the kernel source code [35] (e.g., by
removing unnecessary system calls) based on a static analysis of the applications and the
kernel provides a way to build a tailored kernel for an application. Chanet et al. [7] use
link-time binary rewriting for a comparable result. The first use of kernel specialization
with a quantification of security improvements is in [34], leveraging the built-in config-
urability of Linux to reduce unneeded code with an automated approach. Although this
approach does not require any changes to the source code of the operating system, it still
requires recompiling the kernel.

2.2 System call monitoring and access control

A number of techniques make use of the system call interface or the LSM framework to
restrict or detect malicious behavior. We explain their relation with kernel attack surface
reduction here.

Anomalous system call monitoring. Various host-based intrusion detection systems
detect anomalous behavior by monitoring system calls (e.g., [13, 15, 16, 25, 31, 45,
54] and references in [14]). Most of these approaches detect normal behavior of an
application based on bags, tuples or sequences of system calls, possibly taking into
account system call arguments as well [4]. Because behavioral systems do not make
assumptions on the types of attacks that can be detected, they target detection of unknown
attacks, unlike signature-based intrusion detection systems which can be easily bypassed
by new attacks. It has also been shown that it is possible for attackers to bypass such
detection mechanisms as well [30, 38, 53, 55]. Hence, although behavioral intrusion
detection could, as a side effect, reduce the kernel attack surface (because a kernel
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exploit’s sequence of system calls might deviate from the normal use of the application),
it is bypassable by using one of many known techniques, especially in the context of
kernel attack surface reduction. This argument is not applicable in the case where the
anomaly detection is performed with a trivial window size of one, i.e., on a system-call
basis — however, this corresponds to the essence of system-call-based sandboxing which
is explained in the next paragraph.

System-call-based process sandboxing. Sandboxes based on system call interposi-
tion [2, 9, 18, 19, 33, 46] provide the possibility to whitelist permissible operations for
selected applications by creating a security policy. Although most of these sandboxes
were primarily designed to provide better resource access control, they can also reduce
the kernel attack surface, as the policy will restrict the access to some kernel code
(e.g., because a system call is prevented altogether). A good example for achieving
attack surface reduction with such an approach is provided by seccomp. In its latest
instantiation, it allows a process to irrecoverably set a system call authorization policy.
The policy can also specify allowable arguments to the system call. Hence, this allows
skilled developers to manually build sandboxes that reduce the kernel attack surface
(e.g., the Chrome browser recently started using such a sandbox on Linux distributions
that support it). However, this approach comes with two fundamental drawbacks. The
first is that it is very difficult to quantify how much of the kernel’s attack surface has
been reduced by analysing one such policy, without the full context of the system its
running on. To explain this, we take the simple example of a process that is only allowed
to perform reads and writes from a file descriptor which is inherited from (or passed by)
another process (this is the smallest reasonable policy that one could use). By merely
observing this policy, the attack surface exposed by the kernel to this application could
be extremely large, since this file descriptor could be backing a file on any type of
filesystem, a socket, or a pipe. More generally, the kernel keeps state that will affect
the kernel functions that would handle the exact same system call. The second issue
is that many system call arguments cannot be used to make a security decision (and
reduce the kernel attack surface): this is a well known problem for system call interposi-
tion [17, 56]. As a consequence, the attack surface on some policies can be larger than
expected. Fundamentally, KRAZOR can be seen as a generalization of system-call-based
sandboxing because access control is performed at the level of each kernel function
instead of limiting itself to the system call handlers only.

Access control. The significant vulnerabilities and drawbacks of system-call-based
sandboxing for performing access control have led to mechanisms with tighter integration
with the kernel [57]. In particular, on Linux, the LSM framework was created [58] as a
generic way of integrating mandatory access control (MAC) mechanisms, such as [50],
into the kernel. Unlike system-call interposition, this approach can be shown to provide
complete mediation [27]. In a way, kernel attack surface reduction can also be seen as
a resource access control problem. In this case, the resources to access are no longer
files, sockets, IPCs, but the kernel functions themselves — however, in this case, the LSM
framework would be of little use as a reference monitor (since only a select number of
kernel functions are intercepted). It then becomes clear that the proper way of reducing
the kernel attack surface should also be with a non-bypassable system that would perform
the access control as close as possible to the protected resources: the kernel functions.
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2.3 Other techniques that improve kernel security

There is a wide range of techniques that can improve kernel security without reducing
the kernel attack surface, we mention a few of them here.

One approach is to concede that in practice kernels are likely to be compromised and
the question of detecting and recovering from the intrusion is therefore important. For
this purpose, kernel rootkit detection techniques have been proposed (e.g., [5, 48]), as
well as attestation techniques. Clearly, such techniques are orthogonal to attack surface
reduction which aims to prevent the kernel from being attacked in the first place.

Another approach is to prevent potential vulnerabilities in the source code from being
exploitable, without aiming to remove the vulnerabilities [8, 28, 51]. For instance, the
UDEREF feature of PaX prevents the kernel from (accidentally or maliciously) accessing
user-space data and the KERNEXEC feature prevents attacks where the attacker returns
into code situated in user-space (with kernel privileges). SVA [8] compiles the existing
kernel sources into a safe instruction set architecture which is translated into native
instructions by the SVA VM, providing type safety and control flow integrity.

We consider all aforementioned techniques as supplemental to kernel attack surface
reduction: they can be used in conjunction to improve overall kernel security.

3 Background

This section provides a summary of security metrics previously used for measuring
kernel attack surface reduction, and explains motivations and challenges of kernel attack
surface reduction.

3.1 Defining and quantifying kernel attack surface

Attack Surface. Most kernel exploits take advantage of defects in the kernel source
code (although, exceptionally, they can also take advantage of compiler or hardware
defects). In the process of writing an exploit, it is not only necessary for the attack to find
a defect (such as a double-free) in the source code, but also to find a way to trigger it.
Hence, any code that a given attacker could trigger is in the attack surface of the kernel,
regardless of it containing defects.

More formally, the attack surface is defined as a subgraph of the kernel’s call graph; it
is the subgraph obtained by performing a reachability analysis on the kernel’s call graph,
after starting at the entry functions, i.e., the interface with the kernel for the attacker
(here, system calls). Additionally, when performing this reachability analysis, we take
into consideration functions that may not be reachable for other reasons, e.g., because
the attacker is not privileged enough, or because they belong to a kernel module which
the attacker cannot load. Those functions are referred to as barrier functions.

Security Model. A security model that models the attacker (and the kernel) is needed
in order to assign a set of functions as entry or barrier functions.

We chose a variant of the ISOLSEC security model previously defined in [34] with
some adaptations for our use, and named it STATICSEC. In a nutshell, the GENSEC
model makes the simplistic assumption that the entire kernel is the attack surface. This
model is suitable for comparison with previous work (with classical TCB metrics) and
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Fig. 1. Three possible security models for quantifying kernel attack surface. GENSEC is a strawman
security model for explanation purposes. STATICSEC is the model used in our evaluations, and
differs from ISOLSEC by assuming that no additional LKMs can be automatically loaded.

provides an upper bound on the attack surface measurements. The ISOLSEC model
assumes that the attacker is local and unprivileged, and only has access to the system call
interface. This model is typically suitable for environments where process sandboxing
is used to restrict the impact of vulnerabilities in user-space components, which corre-
sponds precisely to the security model of this work, since we target protection of the
kernel against local attackers. However, the ISOLSEC model assumes that the attacker
can trigger additional loadable kernel modules (LKMs) to be loaded. In contrast, the
STATICSEC model assumes only the LKMs loaded for the specific workload running on
the machine are available to the attacker. This is realistic because disabling this behavior
is straightforward (e.g., by enabling the modules_disabled system control parameter
available since Linux 2.6.31) and is a well-known approach to improve security of Linux
servers. Hence, we opted for this model to evaluate the attack surface reduction that can
be achieved by KRAZOR. Clearly, using the ISOLSEC model instead would result in
higher attack surface reduction results. All three models are summarized in Figure 1 for
comparison.

We note that the ISOLSEC or STATICSEC security model also specifies the attacker
model which KRAZOR assumes: the attacker controls a local unprivileged process (e.g.,
because it remotely compromised the web server), targeting the kernel by making use of
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Functions Ratio

Baseline RHEL 6.1 kernel 31,429 1
Min. functions in attack surface at run-time (gemu-kvm) 5,719 1:6
Min. functions in attack surface at run-time (mysgld) 3,663 1:9

Table 2. Comparison between the number of functions in the STATICSEC attack surface for two
kernels and the number of kernel functions traced for gemu-kvm and mysqld.

kernel vulnerabilities (which can be information leaks, denial of service, or full kernel
compromise to achieve privilege escalation).

Metrics. To measure the attack surface and quantify security improvements, one
could use various attack surface metrics. A simple one is the sum of the SLOC count
over each of the functions in the attack surface, also denoted ASs;pc. Similarly, we can
use cyclomatic complexity of each function[41] as a metric instead of the SLOC, or use
a CVE-based metric associating the value 1 to a function that had a CVE in the past
7 years (a total of 422 CVE:s for the Linux kernel), and 0 otherwise. We respectively
denote those attack surface metrics AS.,; and AScyE.

3.2 Motivations and challenges for run-time attack surface reduction

The results for compile-time attack surface reduction in [34] are very enticing, in
particular, the results show that the kernel attack surface can be reduced by 80 to 85%
(when measured with ASs;oc). We now make three observations that show the added
benefits of a run-time approach.

Improved compatibility and flexibility. The first observation is straightforward:
compile-time attack surface reduction requires recompiling the kernel, which can be
problematic for some practical deployments where the use of a standard distribution
kernel is mandated (e.g., as part of a support contract with the distributor). By providing
attack surface reduction as a kernel module, this requirement can be met. Additionally,
this provides greater flexibility because it becomes possible to easily enable and disable
attack surface reduction without rebooting.

Finer scope-granularity. Attack surface reduction at compile time results in system-
wide attack surface reduction. A run-time approach can have finer scope, e.g., by reducing
the attack surface for a group of processes, or by having different policies for each group
of processes.

Higher attack surface reduction potential. Because of this finer per-process gran-
ularity, run-time attack surface reduction could achieve higher attack surface reduction.
To evaluate the validity of this assertion, we devise the following experiment. On two
machines which serve as development servers, we collect, during 8 months on one
machine and a year and a month on a second machine, kernel traces corresponding to
the use of various daemons and UNIX utilities. We observe that the highest number
of unique kernel functions are used by the gemu-kvm process, which is running in one
node serving as KVM hypervisor on our test bed. The lowest number is achieved by the
MYSQL daemon. Table 2 compares these results and shows that, potentially, restricting
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Fig. 2. Evolution of the number of unique kernel functions used by applications: after a few months,
no new kernel functions were triggered.

the kernel attack surface at run-time can result in an attack surface that is about 5 to 10
times lower than that of a distribution kernel.

Rate of convergence and the challenge of false positives. In our preliminary ex-
periment, no synthetic workloads were run on the machines. Instead, the machines were
traced during their real-world usage. Over time, because the workload on a system can
change, new kernel functions can be used by an application. In Figure 2, we fix the total
number of kernel functions used by a given program, and plot the number of unique
functions that remain after the first system call is performed. The figure shows that it
takes significant time to converge to the final set of functions used by the program. For
example, the My SOL daemon took 103 days to converge to its final set of kernel functions
(out of a total tracing duration of 403 days). Hence, an important challenge in building an
attack surface reduction is to design an approach that will result in fast convergence even
in the presence of incomplete traces. This can also be formulated as reducing the false
positives of the detection system. The approach we take here is to group kernel functions
together (e.g., all functions declared in a given source file) to reduce the likelihood of
false positives.

4 Run-time Kkernel attack surface reduction

In this section, we detail the design and implementation of KRAZOR, a tool that aims
to achieve the benefits of run-time attack surface reduction, while trying to meet its
challenges, in particular the reduction of false-positives. The four major phases for
run-time attack surface reduction are depicted in Figure 3 and detailed below.

O Pre-learning phase. The goal of this phase is to prepare an enforcement phase
(and incidentally, learning phase) with low performance overhead. At first, KRAZOR
sets up tracing for all kernel functions that can be traced. In other words, each kernel
function is instrumented and each call to a kernel function is logged. In the case of Linux,
this is achieved by using the FTRACE tool and the kernel’s debugts interface. Since
some kernel functions are called thousands of times per second, this results in significant
performance overhead at first, and also fills up the log collection buffer very quickly,
which leads to missed traces. In order to cope with this practical limitation, we select,
each time the trace buffer fills up, functions which are called beyond a given threshold
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Fig. 3. KRAZOR run-time kernel attack surface reduction phases.

and disable tracing for those functions. These functions form the system set, while the
remaining kernel functions form the learning set.

Our experiments show this heuristic is useful for keeping a low performance over-
head in the enforcement phase: instrumenting every single kernel function would cause
significant overhead. For instance, functions related to memory management (kfree,
get_page, __page_cache_alloc), or synchronization (_spin_lock) always find
their place in the system set with this heuristic: they are called very often and instru-
menting them would be both detrimental for performance and would not singificantly
reduce kernel attack surface (since most applications would end up using them any-
way). Listing 1.1 shows a more subtle example of a function included in the system
set: ext4_claim_free_blocks is repeadetly called in a loop, and this resulted in the
function being included in the system set, whereas its caller, ext4_mb_new_blocks,
was not.

extd_fsblk_t ext4_mb_new blocks(...)
{

while (ar—->len && ext4d_claim free_blocks(sbi, ar->len)) {

ar—->len = ar->len >> 1;

}

Listing 1.1. Excerpt of an ext 4 kernel function for allocating new blocks for the filesystem. The
function called repeatedly in the while loop was included in the system set by the pre-learning
phase.

@ Learning phase. In this phase, a workload is run and traces are collected to
learn which kernel functions are necessary for the operation of a target program, for
this specific workload as well as the system configuration and hardware specific to
this machine — as different configuration and hardware will result in different kernel
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functions being exercised. For example, the filesystem used to store the files of an
application will result in different kernel functions being called at each I/O operation.

For each target program for which the kernel attack surface should be reduced (e.g.,
sshd and mysqld in Figure 3) a security context is specified. The security context is
used to identify processes during the learning phase and the enforcement phase, in the
same manner security contexts are used to specify subjects in access control frameworks
such as SELinux. For this reason, in the current implementation of KRAZOR, we thus
make use of SELinux [50] security contexts as security context (in Figure 3, this is
represented by the sshd_t and mysqld_t SELinux types). Then, each function trace
collected is associated with this security context, resulting in one analysis set per security
context.

We have implemented this step in two different ways: first, we implemented as a
kernel module using the KPROBES dynamic instrumentation framework. In this case, a
probe is specified for each kernel function in the learning set, and the structure specifying
the probe contains a bit-field which tracks the security contexts which have made use
of the corresponding function (associating also a time-stamp to that access, for the
purposes of creating statistics for this paper). However, as some system administrators
have been wary of installing a kernel module, we have also created a user-space tool
based on FTRACE, which logs and tracks all kernel functions in the learning set. The
functionality that is provided with both approaches is equivalent, although the KPROBES
based approach is more efficient. The user-space tool which is used for phases @ and @
consists of 1600 lines of Python code.

© Analysis phase. In this phase, we expand each analysis set to reduce false positives
during enforcement. Indeed, some kernel functions can be rarely exercised at run-time,
such as fault handling routines, and a learning phase that would not be exhaustive enough
would not catch such functions.

We evaluate three methods to achieve this goal, in addition to keeping the analysis
set unchanged (no grouping). The first, file grouping, performs expansion by grouping
functions according to the source file the function is defined in. The second, directory
grouping, performs expansion by grouping functions according to their source directory.

Finally, we perform cluster grouping, by performing k-means clustering of the
kernel call graph. Although other unsupervised machine-learning algorithms (such as
hierarchical clustering) could be used, we chose k-means because of its well known
scalability (due to the size of the kernel call graph). In particular, we make use of the very
scalable mini-batch k-means algorithm described in [47]. In our experiments, clustering
individual functions led to unevenly-sized clusters and unsatisfactory evaluation results.
Therefore, we opted for using file grouping: each node in our call graph became a file,
and a file calls another target file if and only if there exists a function inside that file
calling a function in the target file. We also converted the graph to undirected, and used
the adjacency matrix thus obtained for clustering. The various parameters necessary for
the clustering algorithm were tweaked iteratively, best results were obtained by using
k =1000, b = 2000, t = 60 with the notations of [47].

In effect, this phase increases the coarseness of the learning phase, trading off attack
surface reduction for a lower false acceptance rate and faster convergence.
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O Enforcement phase. Finally, we enforce that each process (defined by its secu-
rity context) makes calls within the set of functions that are not in the corresponding
enforcement set. To achieve this goal, we monitor calls to each kernel function that is
not in the system set, and verify that the call is permitted for the current security context.
In the implementation, we make use of the Linux kernel’s KPROBES feature to insert
probes at the very beginning of each of those functions. The kernel module consists of
700 lines of C code, and receives the results of phases @ and @ through procfs.

Currently, two options exist for the enforcement phase: the first is to log the violation,
and the second one is a fail-stop behavior, triggering a kernel oops (which will atempt to
kill the current process, failing that the kernel will crash). This enforcement option can
be chosen separately for each security context (i.e., for security contexts where one is
certain that the learning workload is thoroughly completed, enforcement can be set to
fail-stop mode, while other security contexts can be left in detection-only mode.

5 Evaluation
5.1 Evaluation use case

To measure the security benefits, in terms of attack surface reduction as well as false
positives, and performance, we opt for targeting daemon processes on a server during
its use for professional software development and testing, for a period of 403 days. The
server is an IBM x3650, with a quad-core Intel Xeon E5440 CPU and 20 GB RAM,
running the Red Hat Enterprise Linux Server release 6.1 Linux distribution (Linux
kernel version 2.6.32-131). The daemons we target on the server are OPENSSH (version
5.3pl), MYSQL (version 5.1.52) and NTP (version 4.2.4p8). The same server also hosts
KVM virtual machines, and we trace gemu-kvm which is the user-space process running
drivers on the host for virtualizing hardware to the guest virtual machines.

5.2 Attack surface reduction

We compute the reduced attack surface by using the enforcement set for each application
as barrier functions when performing reachability analysis over the call graph. The
kernel call graph is generated using the NCC and FRAMA-C tools. In particular, SLOC
and cyclomatic complexity metrics are calculated on a per-function basis by FRAMA-C.
This approach to quantifying attack surface is an extension of that we described and
previously used in [34], with modifications mainly to support the kernel we used for our
evaluation and the modified security model.

Table 3 summarizes attack surface reduction results for all services, grouping al-
gorithms, and attack surface metrics in our setup. Attack surface reduction can vary
roughly between 30% and 80%, depending mostly on the grouping algorithm. Within a
grouping algorithm, results are consistent (e.g., about 75% without grouping compared
to about 40% with cluster grouping) across different metrics and services. This also
corresponds to a false-negative evaluation: since any kernel function in the attack surface
can potentially have an exploitable vulnerability, the lower the attack surface reduction,
the higher the false negatives.
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Baseline KRAZOR
None File Cluster Directory

Functions 31,429 9,166 (71%) 14,133 (55%) 19,769 (37%) 19,801 (37%)
sshd ASsioc 567,250 139,388 (75%) 236,998 (58%) 343,178 (40%) 346,650 (39%)
ASeyer 154,909 37,663 (16%) 68,937 (55%) 97,913 (37%) 99,615 (36%)
AScvE 262 78 (70%) 152 (42%)  187(29%) 170 (35%)

Functions 31,429 7,498 (76%) 12,283 (61%) 18,284 (42%) 19,015 (39%)
nysqld  ASsioc 567,250 105,137 (81%) 199,366 (65%) 312,574 (45%) 332,238 (41%)
ASeyer 154,909 28,571 (82%) 59,370 (62%) 89,924 (42%) 95,737 (38%)
AScvE 262 37(86%)  111(58%)  162(38%) 165 (37%)

Functions 31,429 8,569 (73%) 13,306 (58%) 18,997 (40%) 19,336 (38%)
ntpd ASsioc 567,250 126,559 (78%) 215,405 (62%) 327,137 (42%) 339,449 (40%)
ASeyer 154,909 34,334 (78%) 64,009 (59%) 93,959 (39%) 97,519 (37%)
AScvE 262 69 (74%)  134(49%) 170 (35%) 170 (35%)

Functions 31,429 11,223 (64%) 16,026 (49%) 19,993 (36%) 22,685 (28%)
gemu-kvm ASsroc 567,250 181,603 (68%) 271,959 (52%) 346,148 (39%) 395,675 (30%)

AScyei 154,909 49,813 (68%) 79,608 (49%) 99,046 (36%) 112,783 (27%)

AScvE 262 92 (65%) 155 (41%) 187 (29%) 174 (34%)
Table 3. Summary of KRAZOR attack surface reduction results for four grouping algorithms in
the analysis phase (None, File, Directory, and Cluster). The term functions refers to the number of
functions in the STATICSEC attack surface.

5.3 False positives

In our setup, we observe the usage of a daemon in its real-world usage. As a consequence,
it is possible that some previously unused feature of the daemon is finally used after
several months of usage. To measure how well different grouping algorithms fare in
that regard, we opt to use the first 20% of the collected traces as a learning phase, and
the remaining 80% as an enforcement phase*. Any function that is called during the
enforcement phase but is not in the enforcement set (or system set) is then accounted
as a false-positive. The results in terms of number of (unique) functions causing false
positives, are shown in Table 4, together with the convergence rate. We observe that,
when grouping by directory or by clustering, this time frame for the learning phase is
largely sufficient in all cases. For the two other grouping techniques, only gemu-kvm
converges prior to the 20% time-frame for all grouping techniques.

5.4 Performance

We measure performance during the enforcement phase with the LMBENCH 3 bench-
marking suite. We perform 5 runs and collect the average latency, which is reported in
Table 5. Most overheads are very low (especially considering this is a micro-benchmark):
the pre-learning phase is effective in segregating performance-sensitive kernel functions.

4 This setting is solely used for the estimation of false-positives. The attack surface reduction
numbers make use of the entire trace dataset as a learning phase (to provide the most accurate
results).
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None File Cluster Directory

ha Convergence rate 26% 26%  12% 20%
s False positives at 20% 20 3 0 0
R Convergence rate 26% 26%  12% 19%

At False positives at 20% 38 4 0 0
ntod Convergence rate 26% 20%  12% 14%
P False positives at20% 10 0 0 0
emu—k v Convergence rate 18% 18%  11% 11%
AEMUTEVIN False positives at 20% 0 O 0 0

Table 4. Convergence rate (convergence time to 0 false-positives by total observation time) and
number of false positives for all analysis phase algorithms for four applications. A false positive is
a (unique) function which is called during the enforcement phase by a program, but is not in the
enforcement or system set.

Baseline KRAZOR Overhead

open and close 2.78 2.80 0.8%
Null I/0 .19 .19 0%
stat 1.85 1.86 0.5%
TCP select 2.52 2.65 5.2%
fork and exec 547 622 14%
fork and exec sh 1972 2025 2.7%
File create 31.6 55.4 75%
mmap 105.3K 107.5K 21%
Page fault 1672 .1679 0.4%

Table 5. Latency time and overhead for various OS operations (in microseconds)

However, some operations (e.g., empty file creation) can incur significant overhead
(75%), which shows that our heuristic approach still has room for improvement —
although file creation is not a performance-critical operation in most workloads.

As a macro-benchmark, we use the mysqglslap load-generation and benchmarking
tool for MYSQL. We run a workload of 5000 SQL queries (composed of 55% INSERT
and 45% SELECT queries, including table creation and dropping time), and measure the
average duration over 30 runs. This workload is run 50 times, resulting in 50 averages,
which we compute a 95%-confidence interval over. Results in Table 6 show that KRAZOR
incurs no measurable overhead. In addition, the results confirm the pre-learning phase’s
effectiveness: without this phase, KRAZOR would incur more than 100% overhead on
this test.

Baseline  KRAzOR W/o pre-learning

Average 2.30 + 0.00 2.31 +0.00 4.67 4+ 0.01
Overhead 0.4% 103%

Table 6. MySQL-slap benchmark: average time to execute 5000 SQL queries (in seconds)
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5.5 Detection of past vulnerabilities

We now focus on four vulnerabilities for the Linux kernel for which a public kernel
exploit was available. We provide a description of each vulnerability, and pinpoint the
individual kernel function responsible for the vulnerability.

KRAZOR detects exploits targeting such vulnerabilities in many cases (see Table 7).
This means, for example, if a remote attacker had taken control of mysqgld through a
remote exploit, or if a virtual-machine-guest exploited a gemu-kvm vulnerability such
as CVE-2011-1751 (virtunoid exploit) on our machine, and then attempted to elevate his
privileges on the host using an exploit for the kernel, KRAZOR would detect the exploit.
In particular, we note that it does not matter how the exploit is written: this detection
is non-bypassable for the attacker because the access to the function containing the
vulnerability is detected by KRAZOR in the enforcement phase, and, by definition, it’s
not possible to write an exploit for a vulnerability without triggering the vulnerability.

Finally, we note that the AScy g metric results (in Table 3) provide figures for esti-
mating KRAZOR’s effectiveness in detecting exploits for past CVEs in a statistically
significant manner. The following examples are for illustrative purposes.

perf_swevent_init (CVE-2013-2094). This vulnerability concerns the Linux
kernel’s recently introduced low-level performance monitoring framework. It was dis-
covered using the TRINITY fuzzer, and, shortly after its discovery, a kernel exploit
presumably dated from 2010 was publicly released, suggesting that the vulnerability had
been exploited in the wild for the past few years. The vulnerability is an out-of-bounds
access (decrement by one) into an array, with a partially-attacker-controlled index. In-
deed, the index variable, event_id is declared as a 64 bit integer in the kernel structure,
but the perf_swevent_init function assumes it is of type int when checking for its
validity: therefore the attacker controls the upper 32 bits of the index freely. In the pub-
licly released exploit, the sw_perf_event_destroy kernel function is then leveraged
to provoke the arbitrary write, because it makes use of event_id as a 64-bit index into
the array. This results in arbitrary kernel-mode code execution.

check_mem_permission (CVE-2012-0056). This vulnerability discovered by
Jason A. Donenfeld [10] consists in tricking a set-user-id process into writ-
ing to its own memory (through /proc/self/mem) attacker-controlled data,
resulting in obtaining root access. The vulnerability is in the kernel func-
tion responsible for handling permission checks on /proc/self/mem writes:
__check_mem_permission. Although KRAZOR does not intercept this function di-
rectly, it intercepts the check_mem_permission function which is the unique caller
of __check_mem_permission (in fact, this function is inlined by the compiler, which
explains why KRAZOR does not instrument it). This means KRAZOR prevents this
vulnerability.

sk_run_filter (CVE-2010-4158). This vulnerability is in the Berkeley Packet
Filter (BPF) [42] system used to filter network packets directly in the kernel. It is a
“classic” stack-based information leak vulnerability: a carefully crafted input allows
an attacker to read uninitialized stack memory. Such vulnerabilities can potentially
breach confidentiality of important kernel data, or be used in combination with other
exploits, especially when kernel hardening features are in use (such as kernel base address
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None File Cluster Directory

CVE-2013-2094 (Perf) v - - -
CVE-2012-0056 (Mem.) v M v M
CVE-2010-4158 (BPF) S,M - - -
CVE-2010-3904 (RDS) v v v v

Table 7. Detection of previously exploited kernel vulnerabilities by KRAZOR (for each grouping).
Legend: v: detected for all use cases, S: detected for sshd, M: detected for mysqgld.

randomization). In our evaluation, KRAZOR detects exploits targeting this vulnerability
when no grouping is used, and under sshd or mysqld.

rds_page_copy_user (CVE-2010-3904). This vulnerability is in reliable data-
gram sockets (RDS), a seldom used network protocol. The vulnerability is straightfor-
ward: the developer has essentially made use of the __copy_to_user function instead
of the copy_to_user function which checks that the destination address is not within
kernel address space. This results in arbitrary writes (and reads) into kernel memory, and
therefore kernel-mode code execution. This vulnerability is in an LKM which is not in
use on the target system, yet, because of the Linux kernel’s on-demand LKM loading
feature which will load some kernel modules when they are made use of by user-space
applications, the vulnerability was exploitable on many Linux systems.

This vulnerability is detected by KRAZOR, even after grouping. However, unlike
the three previous exploits, this vulnerability would also have been prevented by ap-
proaches such as kernel extension isolation, or even more simply, the use of the Linux
modules_disabled switch previously explained. Because of this, as explained in the
STATICSEC model, this CVE (and many similar ones in other modules) is not counted
in the AScy g metric.

6 Discussion

In this section, we discuss the results of kernel attack surface reduction as well as its
issues.

Security contexts. KRAZOR currently makes use of SELinux security contexts.
Other possibilities for security contexts would include process owner UID (which is
suitable for daemons), or the security contexts of other access control frameworks (e.g.,
AppArmor or TOMOYO). An important consideration for access control systems are
the security context transitions that can occur. For traditional UNIX UIDs, this typically
corresponds to suid executables, which will run with the UID of their owner, effectively
transitioning UIDs. SELinux makes use of type transitions to achieve a similar effect,
though they do not need to be used for elevating privileges alone, but are used more
generally for switching privileges. This can be problematic for kernel attack surface
reduction: if an attacker is allowed to change privileges and maintain the possibility of
arbitrary code execution, she can mount attacks to the kernel beyond the restriction of
the current security context. However, in cases where sandboxing is used, processes can
often be prevented from executing other binaries with security transitions.

Analysis phase: grouping algorithms and trade-offs. Figure 4 depicts conver-
gence and attack surface trade-offs for all four grouping methods explored in this work.
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Fig. 4. Attack surface reduction and convergence rate for the evaluated applications, under different
grouping methods.

The closer a data point is to the bottom right corner of this graph, the better the trade-off.
For instance, we observe that cluster grouping subsumes directory grouping: it achieves
a better convergence rate at a slightly better attack surface reduction. Similarly, no
grouping performs better than file grouping for 3 out of the 4 services evaluated (the
exception being ntpd). In practical deployments of KRAZOR, these trade-offs can be
adapted to the workload and target service: for instance, in use-cases where the workload
is less well defined, clustering grouping is a more attractive solution: it converges about
twice as fast as the other algorithms.

False positives. In our evaluation of false-positives, we decided to reserve the last
80% of the traces for the enforcement phase. This corresponds roughly to a period
of almost 3 months for the learning phase, which, although lengthy in some cases, is
reasonable for services which are put into testing for several weeks before being put into
production. In addition, the server we use in this evaluation is a development machine,
whose use can change significantly over time, when compared to a typical production
server. With that in mind, the results are positive: for all grouping methods and services,
no false positives were observed for about a full year.

Performance trade-offs. The pre-learning phase contains a tunable parameter that
sets the threshold for disable tracing of performance-sensitive functions. Because our
results showed low performance overhead with good attack surface reduction, we did not
tweak this parameter in our evaluations. However, we expect that increasing the threshold
(i.e., reducing the size of the system set) will decrease performance, but improve attack
surface reduction (because each application’s traces are cluttered by the system set).
Potentially, the convergence rate can also be improved when grouping is used (because
the system set functions are not fed into the grouping algorithms: after grouping, the
functions present there could unnecessarily increase the kernel attack surface).

Attack surface metrics. Attack surface reduction results remain consistent when
comparing ASszoc, AScyer, AScve and even the number of functions in the STATICSEC
attack surface. This is remarkable, because SLOC and cyclomatic complexity are a priori
metrics (i.e., they aim to estimate future vulnerabilities by source code complexity)
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whereas CVE numbers are a posteriori metrics (i.e., this reflects the number of functions
that have been found to be vulnerable by the past), and only a weak correlation between
such metrics has been found in prior work [49]. We conclude the reduction observed is not
merely in terms of lines of code, but really in the number of exploitable vulnerabilities.

Attack surface size and TCB. In absolute terms, our results show that the kernel
attack surface can be as low as 105K SLOC (without grouping) and 313K SLOC (with
cluster grouping). This means that using the statistic that the Linux kernel has 10 million
SLOC, overestimates the amount of code an attacker (in the STATICSEC model) can
exploit defects in, by two orders of magnitude. While this number is still greater than the
size of state-of-the-art reduced-TCB security solutions such as the MINIX 3 microkernel
(4K SLOC [23]), the Fiasco microkernel (15K SLOC [20]) or Flicker (250 SLOC [43]),
it is comparable to the TCB size of commodity hypervisors such as Xen (98K SLOC
without considering the Dom0 kernel and drivers, which are often much larger [44]).

Hence, we could be tempted to challenge the conventional wisdom that commodity
hypervisors provide much better security isolation than commodity kernels. However,
making such a statement would require comparable attack surface measurements to be
performed on a hypervisor, after transposing the STATICSEC model.

Improving the enforcement phase. Currently, the enforcement phase can only
prevent code execution by a fail-stop behavior: the Linux kernel is written in the C
language, hence with no exception handling mechanism in case the execution flow is
to be aborted at an arbitrary function. As an example, the current execution could have
taken an important kernel lock, and aborting the execution of the current flow abruptly
would result in a kernel lock-up. This fail-stop behavior is a common problem to many
kernel hardening mechanisms (e.g., see references in [36]), and it would possible to
expand KRAZOR with existing solutions. For example, Akeso [36] allows rolling back
to the start of a system call, from (most) kernel functions. This is essentially achieved by
establishing a snapshot of shared kernel state at each system call.

7 Conclusion

We presented a lightweight, per-application, run-time kernel attack surface reduction
framework restricting the amount of kernel code accessible to an attacker controlling a
process. Such scenarios, in which attackers control a process and aim to attack the kernel,
occur increasingly often [11, 12] because of the rise of application sandboxes and the
general increase in user-space hardening. The main goal of KRAZOR is to provide a way
of reducing the kernel attack surface in a quantifiable and non-bypassable way. KRAZOR
incurs rather low overhead (less than 3% for most performance-sensitive system calls),
and can be seen as a generalisation of system-call-sandboxing to the level of kernel
functions. Our evaluation shows that attack surface reduction is significant (from 30% to
80%) both in terms of lines of code and CVEs.

KRAZOR is implemented for the Linux kernel only, however the approach can be
adapted to other operating systems: in particular, it assumes no source code access
(apart from the use of kernel sources for the grouping algorithms and the attack surface
quantification, which can be avoided in practice).

In its current state, KRAZOR is suitable for use cases that are well-defined, typically
server environments or embedded systems, because it uses run-time traces to establish
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the set of permitted functions for a given process (identified by its security context),
which are then monitored and logged for violations. We envision the learning phase
would be turned on when the server is tested prior to being put into production. In
production, KRAZOR can detect many unknown kernel exploits and report, for example,
to security incident and event management (SIEM) tools typically deployed nowadays.

Finally, this work further confirms that the notion of attack surface is a powerful way
to quantify security improvements: it would not be possible to quantify improvements
here with traditional TCB size measurements. We foresee that this notion can have wider
application: for instance, the attack surface delimited thanks to KRAZOR could be used
to steer source code analysis work preferably towards code that is reachable to attackers,
and to prioritize kernel hardening efforts.
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